首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous-phase reforming of 10 wt% ethylene glycol solutions was studied at temperatures of 483 and 498 K over Pt-black and Pt supported on TiO2, Al2O3, carbon, SiO2, SiO2-Al2O3, ZrO2, CeO2, and ZnO. High activity for the production of H2 by aqueous-phase reforming was observed over Pt-black and over Pt supported on TiO2, carbon, and Al2O3 (i.e., turnover frequencies near 8-15 min-1 at 498 K); moderate catalytic activity for the production of hydrogen is demonstrated by Pt supported on SiO2-Al2O3 and ZrO2 (turnover frequencies near 5 min-1); and lower catalytic activity is exhibited by Pt supported on CeO2, ZnO, and SiO2 (H2 turnover frequencies lower than about 2 min-1). Pt supported on Al2O3, and to a lesser extent ZrO2, exhibits high selectivity for production of H2 and CO2 from aqueous-phase reforming of ethylene glycol. In contrast, Pt supported on carbon, TiO2, SiO2-Al2O3 and Pt-black produce measurable amounts of gaseous alkanes and liquid-phase compounds that would lead to alkanes at higher conversions (e.g., ethanol, acetic acid, acetaldehyde). The total rate of formation of these byproducts is about 1-3 min-1 at 498 K. An important bifunctional route for the formation of liquid-phase alkane-precursor compounds over less selective catalysts involves dehydration reactions on the catalyst support (or in the aqueous reforming solution) followed by hydrogenation reactions on Pt.  相似文献   

2.
Ni and Pt catalysts supported on α-Al2O3, α-Al2O3-ZrO2 and ZrO2 were studied in the dry reforming of methane to produce synthesis gas. All catalytic systems presented well activity levels with TOF (s−1) values between 1 and 3, being Ni based catalysts more active than Pt based catalysts. The selectivity measured at 650 °C, expressed by the molar ratio H2/CO reached values near to 1. Concerning stability, Pt/ZrO2, Pt/α-Al2O3-ZrO2 and Ni/α-Al2O3-ZrO2 systems clearly show lower deactivation levels than Ni/ZrO2 and Ni or Pt catalysts supported on α-Al2O3. The lowest deactivation levels observed in Ni and Pt supported on α-Al2O3-ZrO2, compared with Ni and Pt supported on α-Al2O3 can be explained by an inhibition of reactions leading to carbon deposition in systems having ZrO2. These results suggest that ZrO2 promotes the gasification of adsorbed intermediates, which are precursors of carbon formation and responsible for the main deactivation mechanism in dry reforming reaction.  相似文献   

3.
Effects of χ phase- and Si- modified γ-Al2O3 supported Pt catalysts on Pt dispersion and oxygen mobility of Pt/Al2O3 were investigated by CO oxidation test. Dispersion of 0.3, 0.5 and 1 wt% Pt supported on γ-Al2O3 was improved by using χ phase- and Si-modified γ-Al2O3 supports. The results indicate that oxygen mobility of the catalysts essentially affected the catalytic performance and there existed of surface reaction between COsurface and Osurface species activated by different adjacent Pt clusters. Additionally, the highly active χ phase-modified γ-Al2O3 supported Pt catalyst may also be applied in other oxidative insensitive-structure reactions.  相似文献   

4.
A.F. Lucredio  A. Zawadzki 《Fuel》2011,90(4):1424-84
Cobalt catalysts were prepared on supports of SiO2 and γ-Al2O3 by the impregnation method, using a solution of Co precursor in methanol. The samples were characterized by XRD, TPR, and Raman spectroscopy and tested in ethanol steam reforming. According to the XRD results, impregnation with the methanolic solution led to smaller metal crystallites than with aqueous solution, on the SiO2 support. On γ-Al2O3, all the samples exhibited small crystallites, with either solvent, due to a higher Co-support interaction that inhibits the reduction of Co species. The TPR results were consistent with XRD results and the samples supported on γ-Al2O3 showed a lower degree of reduction. In the steam reforming of ethanol, catalysts supported on SiO2 and prepared with the methanolic solution showed the best H2, CO2 and CO selectivity. Those supported on γ-Al2O3 showed lower H2 selectivity.  相似文献   

5.
Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5   总被引:1,自引:0,他引:1  
The direct conversion of cellulose into polyols such as ethylene glycol and propylene glycol was examined over Pt catalysts supported on H-ZSM-5 with different SiO2/Al2O3 molar ratios. The Pt dispersion, determined by CO chemisorption and transmission electron microscopy (TEM), as well as the surface acid concentration measured by the temperature-programmed desorption of ammonia (NH3-TPD), increased with decreasing SiO2/Al2O3 molar ratio for Pt/H-ZSM-5. The total yield of the polyols, i.e., sorbitol, manitol, ethylene glycol and propylene glycol, generally increased with increasing Pt dispersion in Pt/H-ZSM-5. The one-pot aqueous-phase reforming of cellulose into H2 was also examined over the same catalysts. The Pt catalyst supported on H-ZSM-5 with a moderate SiO2/Al2O3 molar ratio and a large external surface area showed the highest H2 production rate. The Pt dispersion, surface acidity, external surface area and surface hydrophilicity appear to affect the catalytic activity for this reaction.  相似文献   

6.
In this work carbon nanofiber (CNF)-coated monoliths with a very thin, homogeneous, consistent and good adhered CNF layer were obtained by means of catalytic decomposition of ethylene on Ni particles.The catalytic behaviour of Pt and Pd supported on the CNF-coated monoliths was studied in the low-temperature catalytic combustion of benzene, toluene and m-xylene (BTX) and compared with the performance of Pt and Pd supported on γ-Al2O3 coated monoliths.The catalysts supported on CNF-coated monoliths were the most active, independent of the metal catalyst or the type of the tested aromatic compound. TPD experiments showed that the γ-Al2O3 phase retained important amounts of the water molecules produced during the reaction. When water vapour was supplied to the reactant flow, the activity of Pd catalysts decreased much stronger than the Pt ones, and the activity of the Pt catalysts supported on the γ-Al2O3 was more affected than that of the catalysts supported on CNF.BTX combustion reactions seem to be catalyzed by Pt and Pd through different kinetic mechanisms, explaining why Pt catalysts always were more active than the Pd ones deposited on the same type of support. Pd catalyzed combustion of benzene is strongly inhibited by oxygen and by water.Catalysts supported on CNF-coated monoliths showed a selectivity to burn benzene better than toluene or m-xylene, attributed to a better aromatic-CNF surface interaction.  相似文献   

7.
Supported PdAg bimetallic catalysts were evaluated for the selective hydrogenation of acetylene in the presence of ethylene. The effects of different zeolite structures and cations were investigated using flow reactor studies, with K+-β-zeolite supported PdAg showing the lowest activity but highest selectivity comparing to the γ-Al2O3 support and other alkaline metal exchanged β-zeolite supports. The K+ promoter effect on γ-Al2O3 was also tested, which showed that adding K+ to γ-Al2O3 increased activity and selectivity. Bimetallic catalysts consisting of Pd and a Group IB metal were also compared. It was found that the PdAg bimetallic catalyst had similar activity but better selectivity comparing to PdCu, while the PdAu catalyst showed the highest activity but lowest selectivity.  相似文献   

8.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

9.
Selective CO oxidation in the presence of excess hydrogen was studied over supported Pt catalysts promoted with various transition metal compounds such as Cr, Mn, Fe, Co, Ni, Cu, Zn, and Zr. CO chemisorption, XRD, TPR, and TPO were conducted to characterize active catalysts. Among them, Pt-Ni/γ-Al2O3 showed high CO conversions over wide reaction temperatures. For supported Pt-Ni catalysts, Alumina was superior to TiO2 and ZrO2 as a support. The catalytic activity at low temperatures increased with increasing the molar ratio of Ni/Pt. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Ni and Pt was determined to be 5. This Pt-Ni/γ A12O3 showed no decrease in CO conversion and CO2 selectivity for the selective CO oxidation in the presence of 2 vol% H2O and 20 vol% CO2. The bimetallic phase of Pt-Ni seems to give rise to stable activity with high CO2 selectivity in selective oxidation of CO in H2-rich stream.  相似文献   

10.
Recently new Pt/Ni-based γ-Al2O3 catalysts have been developed in our laboratory with a good performance for H2 production by aqueous phase reforming of glycerol. This paper reviews these developments based on the study of the catalytic properties and performance, as well as their deactivation mechanisms. These works have led to set new perspectives related to the enhancement of catalysts hydrothermal stability and to the reduction of the deactivation processes.  相似文献   

11.
In the present work, Pt/γ-Al2O3 catalysts with high metal dispersion were prepared and characterized using chloroplatinic acid and platinum acetylacetonate as metal precursors. The activity and selectivity of the catalysts were evaluated in the hydrogenation of sunflower oil. A comprehensive analysis of the effects of key operational parameters on catalytic performance was carried out. The experimental variables were hydrogen pressure (275.8–551.6 kPa), temperature (160–200°C), and catalyst loading (0.005–0.015 kg Ptexp/m3oil). Platinum catalysts were active, with a double bond conversion of 28% at 2 h. The metal precursor affected catalyst selectivity. The catalyst prepared with chloroplatinic acid exhibited a lower formation of trans-isomers compared with Pt acetylacetonate. The γ-Al2O3 supported platinum catalyst with a metal loading of 0.51 wt.% and a metal dispersion of 98% maintained its initial catalyst activity and selectivity after 10 consecutive uses (1200 min accumulate operation time), without changes in its catalytic properties. The obtained results suggested that Pt catalysts are an attractive alternative to conventional nickel catalysts for the hydrogenation of vegetable oil.  相似文献   

12.
Mixed Ni–W–O catalysts (with a W/(Ni + W) atomic ratio of 0.3) supported on γ-Al2O3 or on mesoporous alumina have been prepared, characterized and tested in the oxidation of ethane. For comparison unsupported and supported NiO as well as bulk Ni–W–O mixed oxides catalysts have also been studied. Supported Ni–W–O materials show interesting catalytic performances in the oxidative dehydrogenation of ethane. They show similar catalytic activities than the corresponding unsupported Ni–W–O catalysts. However, the selectivity to ethylene over supported catalysts was higher than that achieved over unsupported samples (the selectivity to ethylene followed the trend: mesoporous-supported > γ-Al2O3-supported > unsupported Ni–W–O). In addition, it has also been observed that Ni–W–O catalysts are more efficient than the corresponding W-free NiO catalysts. The discussion of the catalytic results will be undertaken on the basis of the modification of active sites of NiO when incorporating WO3 and/or metal oxide supports.  相似文献   

13.
Macro-porous monolithic γ-Al2O3 was prepared by using macro-porous polystyrene monolith foam as the template and alumina sol as the precursor. Platinum and potassium were loaded on the support by impregnation method. TG, XRD, N2 adsorption–desorption, SEM, TEM, and TPR techniques were used for catalysts characterization, and the catalytic performance of macro-porous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts were tested in hydrogen-rich stream for CO preferential oxidation (CO-PROX). SEM images show that the macropores in the macro-porous monolithic γ-Al2O3 are interconnected with the pore size in the range of 10 to 50 μm, and the monoliths possess hierarchical macro-meso(micro)-porous structure. The macro-porous monolithic catalysts, although they are less active intrinsically than the particle ones, exhibit higher CO conversion and higher O2 to CO oxidation selectivity than particle catalysts at high reaction temperatures, which is proposed to be owing to its hierarchical macro-meso(micro) -porous structure. Adding potassium lead to marked improvement of the catalytic performance, owing to intrinsic activity and platinum dispersion increase resulted from K-doping. CO in hydrogen-rich gases can be removed to 10 ppm over monolithic K–Pt/γ-Al2O3 by CO-PROX.  相似文献   

14.
Platelet and fishbone carbon nanofibers (CNFs) have been used as supports for cobalt Fischer–Tropsch catalysts. The activity and selectivity of the CNF supported catalysts have been studied at 483 K, 20 bar, and H2/CO = 2.1, and compared with corresponding activity and selectivity for α-Al2O3 and γ-Al2O3 supported cobalt catalysts. The platelet CNF supported catalyst has demonstrated high activity and high selectivity to C5+ hydrocarbons, with activity comparable with Co/γ-Al2O3 and selectivity comparable with Co/α-Al2O3.  相似文献   

15.
Monometallic and bimetallic catalysts (Pt, Ni, and Pt‐Ni) with single support (Al2O3, TiO2) and composite support (CeO2/Al2O3, CeO2/TiO2) were prepared and tested for water‐gas shift reaction in a tubular quartz reactor. Syngas and steam with different steam‐to‐carbon ratios served as feedstock. The operating pressure was fixed while the reaction temperature was varied. The measured results indicated that the monometallic Ni/Al2O3 catalyst exhibits the lowest CO conversion and H2 yield as compared with other catalysts. About the same CO conversion can be obtained from Pt and Pt‐Ni catalysts with single or composite support. However, higher H2 yield can be achieved from the TiO2‐supported catalyst compared with those supported by Al2O3. The experimental data also indicated that good thermal stability can be reached for the Pt‐based catalysts studied.  相似文献   

16.
A series of γ-Al2O3, TiO2 (anatase) and mt-ZrO2 were impregnated with 1.0 wt.% of Cu or Fe and/or with 0.05 wt.% of Pt, Pd or Rh. The obtained samples were tested as catalysts of the selective catalytic oxidation of ammonia. An interesting class of zirconia and titania supported catalysts is based on copper. Modification of these catalysts with noble metals significantly decreased temperature of the ammonia oxidation. Platinum doped catalysts exhibited the highest activity, while rhodium based materials were the most selective catalysts in the studied temperature range. Catalytic performances of tested materials were consistent with their redox properties.  相似文献   

17.
A series of modified γ-Al2O3 supported iron-based catalysts (M-Fe/γ-Al2O3) was developed to reduce SO2 in actual smelter off-gases using CO–H2 gas mixture as reducing agent for sulfur production. Used as modifiers, three metal additives — Ni, Co, and Ce were added to Fe/γ-Al2O3 catalysts. Changes in catalyst structure and active phase were characterized with X-ray diffraction, XPS, SEM, and EDS. The reduction ability of catalysts was exhibited via CO-TPR. The prepared catalysts only need to be pre-reacted for a period of time, eliminating the need for presulfidation treatment. Reaction conditions were optimized in a fixed bed reactor to achieve high SO2 conversion and sulfur selectivity. XRD characterization was carried out to verify the resulting sulfur products. Combining in situ infrared characterization and catalyst evaluation of support and active component, the reaction mechanism was investigated and proposed.  相似文献   

18.
In this study, we investigated the effect of mixing α-Al2O3 and γ-Al2O3 with a Pt catalyst on CH4 selective catalytic reduction (SCR). Among the prepared catalysts, the Pt/α-Al2O3 catalyst was found to have the lowest catalytic activity, but the best adsorption characteristics for CH4, which was used as the reductant. In contrast, the Pt/γ-Al2O3 catalyst was found to exhibit relatively high catalytic activity and moderate adsorption characteristics. To simultaneously enhance the catalytic activity and CH4 adsorption characteristics, we developed a new catalyst, Pt/γ-Al2O3 + Pt/α-Al2O3, by mixing α-Al2O3 and γ-Al2O3 with a Pt catalyst. The catalytic activity test confirmed that mixing these catalysts led to enhanced catalytic activity.  相似文献   

19.
PtCo bimetallic and Co, Pt monometallic catalysts supported on γ-Al2O3, SiO2, TiO2 and activated carbon (AC) were prepared and evaluated for the hydrogenation of benzene at relatively low temperatures (343 K) and atmospheric pressure. Results from flow reactor studies showed that supports strongly affected the catalytic properties of different bimetallic catalysts. AC supported PtCo bimetallic catalysts exhibited significantly better performance than the other bimetallic catalysts, and all the bimetallic catalysts possessed higher activity than the corresponding monometallic catalysts. Results from CO chemisorption and H2-temperature-programmed reduction (H2-TPR) studies suggested that different catalysts possessed different properties in chemisorption capacity and reduction behavior, and AC supported PtCo catalysts possessed significantly higher CO chemisorption capacity compared to the other catalysts. Extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) analysis provided additional information regarding the formation of Pt–Co bimetallic bonds and metallic particle size distribution in the PtCo bimetallic catalysts on different supports.  相似文献   

20.
Ni–Ba catalysts supported on γ-Al2O3 for the dry reforming of methane were prepared, characterized and studied under reaction conditions. Ba incorporation inhibits the formation of Ni spinel. All the Ni–Ba catalysts studied are highly active for the CO2-reforming of methane. However, the Ni–Ba catalyst with high Ba and Ni content was the most active and stable catalyst, due to the presence of accessible Ni particles stabilized by the formation of BaAl2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号