首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

2.
Navarro  R. M.  Peña  M. A.  Merino  C.  Fierro  J. L. G. 《Topics in Catalysis》2004,30(1-4):481-486
Topics in Catalysis - Copper–zinc catalysts deposited by impregnation on different oxidised carbon supports (activated carbon, black carbon and carbon fibres) were tested in the partial...  相似文献   

3.
Vanadia-titania catalysts prepared by different sol–gel procedures were studied as heterogeneous catalysts for the liquid phase oxidation of limonene. The catalysts were characterized by XRD, XPS, ICP and nitrogen adsorption. According to the XRD results the catalyst samples can be divided in two different groups: anatase samples and anatase + rutile samples. XRD signals of vanadia are not found in the diffractograms.

The main reaction products are polymers. Limonene oxide, limonene glycol, carveol and carvone are obtained in small amounts. A number of autoxidation products, alcohols, aldehydes and ketones, are also obtained.

The effects of titania composition on the reaction orientation are discussed.  相似文献   


4.
Selective catalytic oxidation of hydrogen in the presence of hydrocarbons was studied in a fixed bed quartz reactor, over 3 wt%Au/TiO2 and 5 wt%Au/TiO2 catalysts. This reaction can be utilised in the production of light alkenes via catalytic dehydrogenation, providing in situ heat to the endothermic dehydrogenation reaction and simultaneously removing a fraction of the produced hydrogen. It is important to avoid the non-selective combustion of the hydrocarbons in the mixture. Both 3 wt%Au/TiO2 and 5 wt%Au/TiO2 are active for the combustion of hydrogen, but in a gas mixture with propane and oxygen the selectivity is dependent upon the feed ratio of hydrogen and oxygen. At 550 °C, with propane present, no carbon oxides are formed when the H2:O2 ratio is four, but at lower ratios some CO2 and some CO is formed.  相似文献   

5.
Hydrogen production by partial oxidation of methanol (POM) was investigated over Au–Ru/Fe2O3 catalyst, prepared by deposition–precipitation. The activity of Au–Ru/Fe2O3 catalyst was compared with bulk Fe2O3, Au/Fe2O3 and Ru/Fe2O3 catalysts. The reaction parameters, such as O2/CH3OH molar ratio, calcination temperature and reaction temperature were optimized. The catalysts were characterized by ICP, XRD, TEM and TPR analyses. The catalytic activity towards hydrogen formation is found to be higher over the bimetallic Au–Ru/Fe2O3 catalyst compared to the monometallic Au/Fe2O3 and Ru/Fe2O3 catalysts. Bulk Fe2O3 showed negligible activity towards hydrogen formation. The enhanced activity and stability of the bimetallic Au–Ru/Fe2O3 catalyst has been explained in terms of strong metal–metal and metal–support interactions. The catalytic activity was found to depend on the partial pressure of oxygen, which also plays an important role in determining the product distribution. The catalytic behavior at various calcination temperatures suggests that chemical state of the support and particle size of Au and Ru plays an important role. The optimum calcination temperature for hydrogen selectivity is 673 K. The catalytic performance at various reaction temperatures, between 433 and 553 K shows that complete consumption of oxygen is observed at 493 K. Methanol conversion increases with rise in temperature and attains 100% at 523 K; hydrogen selectivity also increases with rise in temperature and reaches 92% at 553 K. The overall reactions involved are suggested as consecutive methanol combustion, partial oxidation, steam reforming and decomposition. CO produced by methanol decomposition is subsequently transformed into CO2 by the water gas shift and CO oxidation reactions.  相似文献   

6.
化学催化法是实现氨基酸脱羧反应的关键科学途径,使用自制的Ru/TiO2催化剂对L-赖氨酸进行脱羧反应,研究还原温度对催化剂活性的影响,发现500 ℃还原的催化剂具有最高的脱羧活性。通过反应条件优化,表明低于6 MPa和8 h,选择性和转化率随初始压力和反应时间增加而增加,继续增加压力和反应时间则发生脱氨副反应,选择性降低;磷酸与L-赖氨酸物质的量比为3时,有利于1,5-戊二胺的生成。  相似文献   

7.
The oxidation of carbon monoxide in the presence of various concentrations of molecular hydrogen has been studied over a Au/TiO2 reference catalyst by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry. It is shown for the first time that H2 enhances the CO oxidation rate on Au/TiO2 without leading to any major loss of selectivity. Increasing the H2 pressure induces higher CO and H2 oxidation rates. Under H2-free conditions, the surface species detected are Auδ+–CO, Ti4+–CO, carbon dioxide and carbonates. Upon the addition of H2, Au0–CO, water and hydroxyl groups become the main surface species. The occurrence of a preferential CO oxidation mechanism involving HxOy species under the present experimental conditions is proposed.  相似文献   

8.
能源危机和环境污染是当今世界发展面临的两大挑战,如何有效缓解煤、石油等不可再生化石资源过度消耗所引发的能源危机,以及由此造成CO2过量排放引起的温室效应问题,是当前人类发展亟待解决的重大科学问题之一。基于此,本文综述了近年来以TiO2为光催化剂,以绿色、清洁的太阳光能催化还原CO2成低价态含碳燃料(如CH4、CH3OH、HCHO、HCOOH、C2H5OH等)研究进展。在TiO2光还原CO2机理基础上,对元素掺杂、半导体复合与染料敏化、高活性晶面调控、低维纳米结构设计、助催化剂、Z型结构设计和单原子催化等方法来提高光还原CO2反应效率和选择性进行分析,并指出目前研究存在的关键问题和未来CO2光还原的发展方向。  相似文献   

9.
The unique and significant promotion effect of water has been evidenced by the selective oxidation of benzyl alcohol to benzaldehyde over Au/TiO2 catalysts. Water has dual promotional functions in the reaction system: to help form unique microdroplets in a multiphase reaction system and to assist the oxygen adsorption and activation. The conversion of benzyl alcohol at a molar ratio of water to solvent (p-xylene) of 7 is 7 times higher than in the absence of water. The present work has highlighted the potential of Au/TiO2 catalysts in aerobic oxidation of alcohols in the unique multiphase reaction system with water as promoting solvent.  相似文献   

10.
Methane partial oxidation (MPO) is considered as an alternative method to produce hydrogen because it is an exothermic reaction to afford a suitable H2/CO ratio of 2. However, carbon deposition on a catalyst is observed as a major cause of catalyst deactivation in MPO. In order to find suitable catalysts that prevent the carbon deposition, NiO-MgO/Ce0.75Zr0.25O2 (CZO) supported catalysts were prepared via the co-impregnation (C) and sequential incipient wetness impregnation (S) methods. The amount of Ni loading was fixed at 15 wt-% whereas the amount of MgO loading was varied from 5 to 15 wt-%. The results revealed that the addition of MgO shifted the light-off temperatures to higher temperatures. This is because the Ni surface was partially covered with MgO, and the strong interaction between NiO and NiMgO2 over CZO support led to the difficulty in reducing NiO to active Ni0 and thus less catalytic activity. However, among the catalysts tested, the 15Ni5Mg/CZO (S) catalyst exhibited the best catalytic stability for MPO after 18 h on stream at 750°C. Moreover, this catalyst had a better resistance to carbon deposition due to its high metallic Ni dispersion at high temperature.  相似文献   

11.
The effect of palladium incorporation on the performance of Cu–ZnO(Al2O3) during the hydrogenation of carbon dioxide has been assessed. Temperature-programmed reduction profiles and X-ray photoelectron spectra of copper revealed that Pd enhances copper oxide reduction. Carbon dioxide conversion and methanol yield were found to increase on Pd-loaded catalysts. The importance of the palladium incorporated to the base Cu–ZnO(Al2O3) catalyst in determining the catalytic activity is discussed in terms of the relative ease with which hydrogen is dissociated on the Pd particles and then spilt over the Cu–ZnO phase of the base catalyst.  相似文献   

12.
李锦卫  朱佳 《工业催化》2015,23(12):1002-1007
采用沉积-沉淀法制备CuMnO_x/TiO_2新型甲苯燃烧催化剂,考察焙烧温度、Cu与Mn物质的量比、Cu和Mn总负载量、空速及水蒸汽含量对催化甲苯燃烧性能的影响。研究表明,焙烧温度500℃和Cu与Mn物质的量比为1∶1时,催化剂活性最好,反应温度250℃时,甲苯去除率为100%;水蒸汽的出现明显降低了甲苯转化率。XRD和H2-TPR表征结果表明,CuMnO_x/TiO_2催化剂的主要活性相为铜锰尖晶石(Cu1.5Mn1.5O4),它的存在降低了CuMnO_x/TiO_2催化剂的还原温度,是催化活性优良的主要原因。  相似文献   

13.
Photodegradation of phenol was investigated with two types of oxidant agents in water, oxygen and hydrogen peroxide, at two different reaction pH with a series of nanosized iron-doped anatase TiO2 catalysts with different iron contents. The catalysts have been prepared by a sol–gel/microemulsion method. Firstly, iron-doped titania catalysts were studied with respect to their activity behavior when oxygen was used as oxidant agent in the photocatalytic degradation of aqueous phenol in comparison with un-doped reference catalysts. Secondly, two catalysts (TiO2 and 0.7 wt.% Fe-doped TiO2) were selected to extend the study for the employment of hydrogen peroxide as oxidant at different concentrations and two initial reaction pHs. An enhancement of the photocatalytic activity is observed only for relatively low doping level (ca. 0.7 wt.%) in catalyst calcined at 450 °C preferably using hydrogen peroxide as oxidant agent which is attributable to the partial introduction of Fe3+ cations into the anatase structure. Nevertheless, it has been demonstrated that catalyst surface properties can play an important role during phenol photodegradation process on the basis of the analysis of differences found in the photoactivity as a function of reaction pH.  相似文献   

14.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

15.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

16.
In this study, Ni/Ce0.75Zr0.25O2 catalyst was doped with different amounts of Sn by co-impregnation method. The catalysts were characterized by BET, H2 chemisorption, XRD, TPR, TEM, XPS and tested for iso-octane partial oxidation (iC8POX) to H2 in the temperature range of 400–800 °C at atmospheric pressure. The results showed that most of Sn species were present on the surface of Ni particles and did not modify the reducibility of the support. Addition of a small amount of Sn (<0.5 wt.%) lowered the catalytic activity for iso-octane partial oxidation by less than 5% while the extent of carbon deposition was decreased by more than 50%. However, Sn loadings higher than 1 wt.% caused a massive drop in catalytic activity. This indicates that as long as the Ni surface is only partially covered with Sn species, the active sites for the partial oxidation of iso-octane remain intact, while the surface site ensembles required for carbon formation are blocked.  相似文献   

17.
A 5 wt% CoOx/TiO2 catalyst has been used to study the effect of calcination temperature on the activity of this catalyst for CO oxidation at 100 °C under a net oxidizing condition in a continuous flow type fixed-bed reactor system, and the catalyst samples have been characterized using TPD, XPS and XRD measurements. The catalyst after calcination at 450 °C gave highest activity for this low-temperature CO oxidation, and XPS measurements yielded that a 780.2-eV Co 2p3/2 main peak appeared with this catalyst sample and this binding energy was similar to that measured with pure Co3O4. After calcination at 570 °C, the catalyst, which had possessed practically no activity in the oxidation reaction, gave a Co 2p3/2 main structure peak at 781.3 eV which was very similar to those obtained for synthesized ConTiOn+2 compounds (CoTiO3 and Co2TiO4), and this catalyst sample had relatively negligible CO chemisorption as observed by TPD spectra. XRD peaks indicating only the formation of Co3O4 particles on titania surface were developed in the catalyst samples after calcination at temperatures ≥350 °C. Based on these characterization results, five types of Co species could be modeled to exist with the catalyst calcined at different temperatures. Among these surface Co species, the Type A clean Co3O4 particles were predominant on a sample of the catalyst after calcination at 450 °C and highly active for CO oxidation at 100 °C, and the calcination at 570 °C gave the Type B Co3O4 particles with complete ConTiOn+2 overlayers inactive for this oxidation reaction.  相似文献   

18.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

19.
The partial oxidation of methanol for the production of hydrogen was investigated in both a fixed-bed microreactor and in a thermogravimetric analyzer (TG-FTIR) from 180 °C to 250 °C using a commercial Cu/ZnO/Al2O3 catalyst. In the microreactor, a hot spot in the undiluted catalyst bed of 4 K and 32 K was observed at 180 °C and 220 °C, respectively. Methanol conversion was strongly accelerated between 180 °C and 220 °C. In the TG-FTIR experiments, the reduced copper was completely oxidized to cuprite, Cu2O, with increasing time-on-stream in the presence of oxygen and methanol (O2/MeOH = 0.5) at 180 °C. The selectivity to formaldehyde increased in the same manner as the catalyst was oxidized to cuprite. In contrast, at 250 °C the catalyst remained completely reduced for the same O2/MeOH ratio. Two main reaction pathways are proposed explaining the influence of the copper oxidation state on the product distribution.  相似文献   

20.
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号