共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
锂离子电池及其电解液 总被引:2,自引:0,他引:2
概述了锂离子电池与传统的镍镉(Ni/Cd)、镍氢(Ni/MH)电池性能的比较,着重论述了锂离子电池电解液中的导电锂盐和有机溶剂,并介绍了锂离子电池工业的现状和对前景的展望。 相似文献
5.
6.
7.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。 相似文献
8.
9.
10.
11.
一步法顺酐加氢生产丁二酸酐的最佳条件为:加氢压力1~1.6 MPa,反应温度50~100℃,反应时间1~2 h,骨架镍催化剂用量是顺酐用量的4%~6%,搅拌速度300 r/m in,在此条件,丁二酸酐的最高收率可达90%以上。 相似文献
12.
The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces. 相似文献
13.
14.
Mao-Sung Wu Pin-Chi Julia Chiang Jung-Cheng Lin Jyh-Tsung Lee 《Electrochimica acta》2004,49(25):4379-4386
Addition of copper trifluoromethanesulphonate (CuTF) to propylene carbonate (PC)-based electrolyte effectively suppresses the cointercalation and decomposition of PC in the mesocarbon microbeads (MCMB) electrodes during the first lithiation process. During the first charging cycle, copper ions are reduced at a higher potential (2 V versus Li/Li+) than the potential of PC cointercalation and decomposition (0.6-0.8 V versus Li/Li+), and predominately form a porous copper layer over the MCMB surface, thereby obstructing PC to cointercalate. An increase in reversible capacity can be achieved by increasing the amount of CuTF. However, above a critical value, the copper layer inhibits the intercalation of lithium ions and lowers the capacity. The AC impedance data reveal that the passivation film and the charge-transfer resistance are both increased when the deposited copper is in excess. An optimum result may be obtained when the addition is approximately 5 wt.%. CuTF is a possibility for PC-based electrolyte additive in lithium-ion batteries. 相似文献
15.
16.
以高活性聚异丁烯(PIB)和马来酸酐(MA)为原料,采用直接加热法制备了聚异丁烯丁二酸酐。试验考察了反应添加剂、反应温度、反应时间、原料配比对产物酸值的影响。确定的最佳工艺条件为:不添加任何添加剂、反应温度200℃,反应时间7 h,n(MA)/n(PIB)为2.3。该工艺条件下得到的产物为褐红色透明黏稠液体,产物酸值(以KOH计)达到90.8 mg/g。 相似文献
17.
P. Isken C. Dippel R. Schmitz R.W. Schmitz M. Kunze S. Passerini M. Winter A. Lex-Balducci 《Electrochimica acta》2011,(22):7530
The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 °C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF4) displayed a conductivity of 2.6 mS cm−1 and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF6) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g−1 at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells. 相似文献
18.
设计合成了一种新型三甲基硅取代碳酸丙烯酯化合物(TMSPC),并对其化学结构、热性能、离子电导率、电化学窗口和燃烧性能进行了详细的表征。通过与商业电解液(1 mol·L-1 LiPF6/EC:DEC=1:1,体积比)互配组成电解液,30%(vol) TMSPC的添加能大大降低电解液的燃烧速率。同时,对LiFeO4/Li半电池进行测试,在0.2 C倍率条件下,30%(vol) TMSPC的添加也能提高电池的循环性,未添加与添加TMSPC的LiFeO4/Li 在110个循环后的容量分别为106 mA·h·g-1和109 mA·h·g-1,相应的容量保持率为81%和87%。 相似文献
19.
The graft reaction of succinic anhydride onto poly(vinyl alcohol) (PVA) was catalyzed by p‐toluenesulfonic acid monohydrate in solid state. The infrared spectra and 1H‐NMR spectra confirmed that succinic anhydride was successfully grafted onto PVA backbone. The influences of reaction temperature, reaction time, the amount of succinic anhydride, and the amount of catalyst on the graft reaction were studied. Uncrosslinked PVA graft copolymer with grafting degree up to about 6.5% could be obtained under low reaction temperature, short reaction time, and low amount of catalyst, whereas crosslinked PVA with high gel content could be obtained under high reaction temperature, long reaction time, and high amount of catalyst. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 848–852, 2007 相似文献