首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Backscattered electron images (BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone (ITZ) in concrete. Influences of aggregate size (5, 10, 20, and 30 mm), water to cement ratio (0.23, 0.35 and 0.53) and curing time (from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete.  相似文献   

2.
We experimentally studied the fine lightweight aggregate with the particle size range of 3.15-4.75 mm used as functional bridge between FRP sheet and concrete substrate. However, problems would appear and how to deal with the interfacial transition zone (ITZ) and make it stronger is the key point for this concept. Considering that silane coupling agent (SCA) can provide a better bond on a silicon-containing material surface, it was introduced as a modifying material to further improve the bond quality of the ITZ between lightweight aggregate and cement paste. Results indicated that the water absorptivity of lightweight aggregate can be controlled by SCA solutions, and the pull-off bond strength, mechanical strength, and microhardness were increased, which was attributed to the optimized microstructure under the condition of an appropriate concentration of SCA.  相似文献   

3.
采用扫描电镜、能谱分析、X射线衍射、显微硬度和氮吸附等微观测试方法研究了再生细骨料及其混凝土的微观结构特征.研究结果表明:再生细骨料是一种组成复杂的、具有一定水化活性的和高渗透性的人造骨料,其主要矿物相为SiO2、CaCO3以及少量的C2S.再生细骨料混凝土内部水泥石孔隙较多,结构密实性较差,同时其与再生细骨料间存在较为明显的界面过渡区,该界面过渡区宽度较大,且界面过渡区两侧的骨料和水泥石的显微硬度均较低.再生细骨料的多孔结构,以及再生细骨料混凝土内部水泥石和界面过渡区微观结构缺陷是导致其大孔增多的主要原因,大孔的增多会对混凝土抗渗性产生不利影响.  相似文献   

4.
1Introduction Increasingattentionispaidtotheinvestigationand applicationofregeneratedconcrete(RC)forthesustain abledevelopmentofsociety[13].TheRCispreparedwith demolitionwasteconcreteoroldconcreteastherecycled aggregate(RA).RAcontainsacertainamountofhard enedcementmortar,someofwhichhaveaformofinde pendentlumps,andothersadhereontothesurfaceofnat uralaggregate.SinceRAhasagreaterporosityanda higherwaterabsorptioncapacitythannaturalaggregate,whichhasagreaterinfluenceontheperformanceofRC;conse…  相似文献   

5.
目的研究不同吸水率轻骨料制备的混凝土中骨料-水泥石界面区的微观形貌、水化产物的钙硅质量比、水泥石的显微硬度以及孔结构等性能参数.方法采用扫描电镜(SEM)、X射线能谱分析(EDXA)、显微硬度以及孔结构等试验手段,并与普通骨料混凝土进行对比分析.结果轻骨料-水泥石界面区各项性能均优于普通骨料,轻骨料吸水率越大、表面越粗糙,界面区水泥石结构越致密,孔结构呈细化趋势,低、中、高吸水率轻骨料-水泥石界面区显微硬度较普通骨料分别提高15.8%、79.6%和96.3%,界面增强层厚度为40~60μm,并且,中、高吸水率陶粒混凝土中,距骨料-水泥石界面-10~0μm范围内具有一个明显的内增强层.结论轻骨料性能对界面区水泥石微观结构具有显著影响,中、高吸水率轻骨料可使界面区结构得以改善.  相似文献   

6.
利用扫描电子显微镜(SEM)、电子探针(EPXM)和电子能谱(EDXA)对骨料颗粒和水泥浆体界面过渡区(ITZ)进行了研究,研究的重点是老混凝土中骨料-水泥界面过渡区的微观结构特征和成份分布,结果表明,老混凝土由于在成熟度高,其ITZ中水化物十分丰富,密实度高。ITZ内部和外部的水化产物组成存在一定的差别,表现在Ca,K和Fe等元素富集于ITZ,而Si元素在此区域的含量相对较低,对于特定的元素或物质在ITZ中的富集现象的研究,有助于提高对混凝土材料稳定性的认识。  相似文献   

7.
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone (ITZ) properties of recycled aggregate concrete (RAC) was investigated. Properties of recycled concrete aggregate (RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron (BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate (CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.  相似文献   

8.
开裂混凝土中氯离子扩散行为的细观数值模拟   总被引:1,自引:0,他引:1  
为了研究氯离子在开裂混凝土中的扩散性能,考虑混凝土细观结构的非均质性,将含有裂纹的混凝土试件视为由砂浆基质、骨料、界面过渡区以及裂纹组成的四相复合材料,建立了带有单条裂纹的二维细观有限元模型.数值模型中,骨料不具有渗透能力,砂浆基质和界面中的氯离子扩散性能由水灰比确定,裂纹相中氯离子扩散系数与裂纹宽度的定量关系由文献中已有试验数据的拟合获得.研究了骨料分布形式对氯离子扩散行为的影响,分析并探讨了不同裂纹宽度下混凝土中的氯离子扩散行为.数值结果与试验数据的良好吻合说明了该方法的准确性.研究结果表明:骨料的随机分布形式基本不影响混凝土中氯离子的扩散行为;裂纹宽度小于50μm时,混凝土中氯离子的扩散行为基本不受裂纹的影响;裂纹宽度介于50~170μm时,氯离子的扩散随裂纹宽度增大而明显加剧;裂纹宽度大于170μm时,氯离子在裂纹附近的扩散趋于二维扩散形态.  相似文献   

9.
Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 °C to 700 °C. Results show that heating was effective, among which thermal activation of red mud at 600 °C was most effective. Chemical analysis suggested that cement added with 600 °C thermally activated red mud yielded more calcium ion during the early stage of hydration and less at later stage in liquid phase of cement water suspension system, more combined water and less calcium hydroxide in its hardened cement paste. MIP measurement and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud. Funded by the National 973 Program of China (No. 2001CB610703)  相似文献   

10.
再生集料混凝土的微观结构特征   总被引:13,自引:1,他引:13  
研究了两种不同类型的再生混凝土集料(RC集料)和一种花岗岩集料配制的混凝土的微观结构特征,尤其是集料和水泥浆体之间的界面过渡区的某些结构细节。结果表明,界面过渡区的微观结构特征与集料的密实程度有关,过于密实(天然集料)和过于疏松(低标号混凝土)的集料可引起界面区的多孔性或聚集粗大颗粒的水化产物,而适中密实程度的集料可形成较为密实的界面区。  相似文献   

11.
混凝土集料-浆体界面过渡区微观结构表征技术综述   总被引:4,自引:0,他引:4  
硬化混凝土由集料、界面过渡区和水泥浆体三个部分组成。其中集料一浆体界面过渡区被认为是混凝土中最薄弱的环节。界面的表征手段对界面研究极其重要,在理解界面的性质、特征等方面起到了很大的作用;界面问题研究的深入,与研究方法的不断更新有密切关系。本文归纳了界面过渡区微观结构特征,并在此基础上结合界面过渡区微观结构具体的研究对象,对表征ITZ的试验技术进行了评述,指出界面研究的一些潜在的方法。  相似文献   

12.
水泥浆体/碎石界面性能的交流阻抗研究   总被引:5,自引:0,他引:5       下载免费PDF全文
提出了用交流阻抗谱方法来研究水泥浆体/碎石界面的性能。通过比较交流阻抗谱的三个参数来确定水混浆体/碎石界面效应的大小。  相似文献   

13.
The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.  相似文献   

14.
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone(ITZ)between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity(n)and constrictivity factors(Ds/D0)of pore in the hardened pastes are n≈3.2,Ds/D0=1.0×10-4respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results;The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.  相似文献   

15.
The dominant factors during early hydration process of cement paste containing 10% metakaolin replacement (MK10) and 10% kaolin replacement (K10) are investigated in comparison to neat cement paste (NCP), and X-ray Diffraction (XRD) analysis is employed to identify the crystalline phases of all specimens. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) are used to identify the phase constituents. The amount of acid-insoluble residue (AIR) of all specimens is used to evaluate the unreacted materials. The results indicate that, after the first day, MK act as nuclei for the formation of C-S-H during hydration of C3S and C2S, densifying the microstructure of cement paste. Its contribution is mainly due to the fine nature of the MK. From 3 days to 7 days, more and more MK reacts with CH to form C-S-H, making the microstructure denser. The strength contribution is mainly due to the chemical activity of MK.  相似文献   

16.
The influence of lightweight aggregate (LWA) pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investigated. The results show that, in early age the dry LWA has significant effect on the formation of dense paste around it and improving the concrete impermeability. However the prewetted LWA has strong water-releasing effect in later age, which increases the hydration degree of the paste around it, and makes the adjacent paste develop a structure with low porosity and finer aperture, furthermore the concrete impermeability can be improved. It is suggested that, as for concrete with low durability requirement, the LWA without pre-wetting treatment can be used as long as meet the workability requirement of fresh concrete, the good impermeability of concrete can be gained as well. As for concrete with high durability requirement, the prewetted LWA should be used, and the pre-wetting time should be extended as long as possible, in order to optimize the concrete structure in long term, and improve the concrete durability.  相似文献   

17.
利用电子探针(EPXM)对骨科颗粒和水泥浆体界面过渡区(ITZ)进行了研究,研究的重点是化学元素在ITZ附近的分布情况,试验结果表明:Ca、K和Fe有不同程度地集中于界面过渡区的趋势,而Si的浓度在界面处相对比较低,但随着远离界面其浓度逐渐升高。Mg、Al等元素在ITZ的局部出现,且有不连续分布的特点。通过对老混凝土中ITZ元素分布的分析,可以部分地了解混凝土内部所发生的离子和物质迁移,骨科和水泥浆体之间发生的化学反应,从而为评估混凝土的化学稳定性乃至其耐久性提供依据。  相似文献   

18.
通过试验研究水灰质量比、粒径级配、再生砖骨料和砂体积分数对混凝土抗压强度的影响以及灰砂质量比对水泥石抗压强度的影响,分析骨浆体积比、灰砂质量比、再生砖骨料和砂体积分数对混凝土架构贡献强度的影响. 结果表明,再生砖骨料混凝土的抗压强度随着水灰质量比的减小而增大,当骨料粒径为19~26.5 mm时抗压强度达到最大值;当再生砖骨料体积分数为30%~43.2%时,混凝土抗压强度和再生砖骨料构架贡献强度都随着再生砖骨料体积分数的增大而增大,且都随着砂体积分数的增大而增大;当灰砂质量比为0.33~1.33时,水泥砂浆试件的抗压强度随着灰砂质量比的增大而增大;当再生砖骨料体积分数为40%和43.2%时,灰砂质量比与再生砖骨料架构贡献强度以及骨浆体积比与再生砖骨料架构贡献强度均高度线性相关;再生砖骨料架构贡献强度高于混凝土强度,主要集中在再生砖骨料体积分数为40%~43.2%,特别是再生砖骨料体积分数为43.2%、砂体积分数为18%~26%.  相似文献   

19.
调凝型外加剂对水泥凝结硬化性能的影响   总被引:3,自引:2,他引:3  
研究了缓凝剂、速凝剂单掺以及与其它品种外加剂复配掺入时,对水泥凝结与硬化性能的影响。通过XRD、SEM微观测试手段,研究了调凝型水泥基材料的微观结构特征。试验结果表明:缓凝剂、速凝剂与防水剂、减水剖复配使用,调凝效果显著,水泥硬化体形成的空间网络结构密实、强度高。  相似文献   

20.
混凝土界面过渡区不均匀特性研究   总被引:2,自引:0,他引:2  
在新拌混凝土制备过程中,因混凝土内部的微泌水效应和宏观泌水作用会对处于不同位置的骨料周围区域内产生水分的不均匀分布,进而影响界面过渡区的均匀性。利用显微硬度测试技术研究了混凝土界面过渡区的不均匀特性。结果表明,单骨料上、下以及侧面等不同界面处显微硬度值存在较大差别,其中上界面显微硬度值最大。表层骨料周围界面过渡区宽度略大于内部骨料界面过渡区;硅灰的掺加能明显改善混凝土界面过渡区的不均匀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号