共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
车辆主动悬架用电机作动器的研制 总被引:9,自引:1,他引:9
针对现有车用液力式主动悬架作动器普遍存在的响应慢、能耗大、蓄能效率低和结构复杂等不足,提出采用滚珠螺旋传动式无刷电机作动器的电机蓄能式主动悬架,并对该主动悬架的结构原理和电机作动器的创新设计方案。并以某中级轿车半独立后悬架作为试验对象,对电动机作动器的弹性元件、滚珠丝杠和无刷电动机等重要部件进行结构设计以及对输出特性进行分析推导。试制出电机作动器的功能样机,并对电气特性和被动响应特性进行测试分析,初步验证了该电机作动器的可行性和有效性,同时还阐述在有待进一步改进的设计缺陷,以及尚须进一步测试的主动控制响应和电磁蓄能特性等性能指标。 相似文献
3.
车辆主动悬架用电磁直线作动器的研究 总被引:3,自引:0,他引:3
针对车辆主动悬架的使用要求,设计出一种具有行程大、推力大及响应快速特点的新型电磁直线作动器.结合有限元仿真软件,研究作动器的结构参数如气隙厚度、次级不锈钢管厚度、次级铜层厚度、绝缘挡圈导磁和导电性能及初级线圈的绕线方式等的变化对作动器电磁力大小和响应速度的影响规律,以及电源参数如电源电压、电源频率及电源加载方式的变化对作动器电磁力大小和响应速度的影响规律,结果表明,电磁力除与绝缘挡圈的导电性能无关外,而与气隙厚度等众多结构参数密切相关,电磁力与电源电压的平方成正比例关系,且随电源频率的增大而先增大后减小,在20 Hz左右存在电磁力响应峰值.在此基础上选取合理的参数,试制一款电磁直线作动器样机,并对样机模型进行稳态电磁力和相电流的相关试验测试,通过与有限元仿真结果比较,表明仿真分析结果和试验测试数据基本吻合,验证了有关设计分析的正确性. 相似文献
4.
5.
针对电磁主动悬架作动器波动比大和输出精度低的缺点,设计了一种12槽10极分数槽结构电磁直线作动器。建立有限元模型,通过反电动势对比和力特性试验验证了模型的正确性。考虑齿槽力和边端力对作动器波动力的影响,提出了一种计算最佳槽口宽度和改进定子边端弧度的方法,并对作动器的工作效率随电流激励变化规律进行分析。结果表明:当槽口宽度为4.3mm时,推力波动最小等于43.7N;当边端弧度为60°时,定位力波动最小为9.5N,推力波动比最小等于4.8%;工作效率随三相电流频率的增大而提高,随电流的增大而降低。电磁主动悬架作动器工作特性试验证明:随着悬架运行速度的提高,应逐渐增加作动器输入电流和电流频率。 相似文献
6.
为提高双足压电直线作动器的有效驱动,增强作动器中二级杠杆微位移结构和柔性铰链的放大能力,对作动器的结构参数进行优化。首先,对二级杠杆微位移机构的放大倍数进行理论计算,基于ANSYS完成作动器定子作动仿真过程;其次,通过仿真分析发现,在作动器定子中综合使用直圆型柔性铰链和直梁型柔性铰链,会使作动器定子放大倍数得到优化,最优铰链参数对应的放大倍数为8.131;最后,制作了该作动器样机并进行了定子驱动足振幅测试,两驱动足的振动相对稳定。实验结果表明,驱动足I,II的位移振幅在60和63μm的上下范围浮动,与实际相符合。与现有的压电直线作动器相比较,该作动器结构简单,易于安装调试,具有大振幅驱动和运行稳定等特点。 相似文献
7.
基于压电作动器的大容性负载特性,通过电路匹配分析提出了基于直流升压变换器和谐振驱动控制电路;根据压电作动器驱动偏压要求,设计偏压电路使输出电压在-20~100 V之间;采用微处理器和D触发器设计驱动信号产生电路;将设计的驱动电源用于双作动器驱动的压电直线电机,电机运转平稳,电路功耗小,通过匹配不同的电感实现了宽频范围驱动. 相似文献
8.
9.
近来能同时改善汽车驾乘平顺性和稳定性的主动悬架技术受到越来越多人的关注,研究学者们致力于研究主动悬架的上层控制策略,而对作动器实际输出主动力的伺服控制却研究较少。为了能精准稳定的输出理想主动力,对一种电磁主动悬架中的直线作动器进行了建模分析,给出了该直线作动器的控制系统方案,搭建了基于DSP的直线作动器软硬件控制系统。对所设计的控制系统进行了试验,试验结果表明该系统具有较快响应速度,信号跟踪精度误差小于2.1%,稳态标准差不超过0.6%,可满足主动悬架对主动力的输出要求。 相似文献
10.
提出了一种并联式滚珠丝杠半主动悬架作动器结构。建立了滚珠丝杠作动器数学模型,并利用MATLAB/Simulink软件对并联式滚珠丝杠半主动悬架作动器进行了阻尼特性与馈能特性仿真,验证了结构的可行性。仿真结果表明:作动器阻尼力为0~1200N;作动器在低频振动下可以产生的馈能电压为0~6V,馈能功率为0~80W,馈能效率为41.61%~48.72%。在参数优化的基础上试制了作动器物理样机,齿轮采用铝制材料经线切割而成,因此作动器响应速度良好,最后进行了作动器馈能特性试验。 相似文献
11.
用ANSYS建立了电磁作动器的三维静态磁场仿真模型.仿真研究了电磁作动器的磁场分布规律,以及电磁铁铁芯直径d、铁芯长度l、电磁线圈匝数N、电磁线圈电流I、工作气隙δ等参数对衔铁所受电磁力的影响.仿真结果表明,电磁作动器磁场基本呈对称分布,磁力线集中在铁芯和衔铁中.衔铁所受电磁力随d,N,I,的增大而增大,随l,δ的增大而减小. 相似文献
12.
近年来我国轨道交通技术高速发展,高速列车的运行速度也不断提高,但由于轨道不平顺、车体轻量化设计、会车及通过隧道等原因导致车体振动加剧问题愈加突出,采用作动器提供主动控制力以抵消车体振动的主动悬架系统可极大程度地提高车辆的安全性和舒适性,故将作动器应用于高速列车主动悬架符合列车减振要求和发展方向。为此,文中结合高速列车主动悬架对减振作动器的要求,设计了一种高速列车主动悬架超磁致伸缩作动器,采用TX定向超磁致伸缩材料(GMM)及液压式位移放大机构二者相结合的方式,保证列车减振所需的输出位移和输出力,借助COMSOL软件确定了关键部件的参数,采用MATLAB软件搭建模型进行了性能仿真分析,并搭建基于LABVIEW的超磁致伸缩作动器试验台进行了验证。 相似文献
13.
14.
提出了应用于干涉显微镜焦距调节的直线压电叠堆作动器和微动台.介绍了基于三角位移放大原理的压电作动器结构设计,利用ANSYS的APDL语言实现了对作动器钢架结构的建模,并采用Optimus中自带的差分进化算法(DE)对其结构尺寸进行了优化.制作了实验样机,激光干涉实验表明:当驱动电压信号幅值为40~100 V时,作动器位移放大倍数可以达到7.最后,将设计的直线作动器作为驱动核心安装在自行设计的微动台上,然后将组成的系统用于光学干涉显微镜.实验显示,整个系统在电压为24~40 V,阶梯增量电压为0.8V时,步进分辨率可达23 nm,满足干涉显微镜细分干涉条纹所需要的直线位移分辨率的要求. 相似文献
15.
针对电磁主动悬架直线式作动器电磁力波动对悬架系统影响问题,建立作动器磁场解析模型,以总谐波畸变量(Total harmonic distortion,THD)作为电动势(Electromotive force,EMF)中谐波含量的评价指标,对影响电磁力输出的EMF进行谐波分析,在此基础上,建立考虑悬架电磁力波动特性的悬架系统模型,分析了车辆动力学响应特性。其次,采用多目标粒子群智能优化算法,以“大EMF幅值”和“小THD”值作为目标,对作动器结构参数进行多目标优化,并利用模糊集合理论对优化后的Pareto最优解集进行选优。仿真结果表明,作动器电磁力波动下降了53.8%,有效电磁力提升了8.5%,基本消除了电磁力波动对悬架系统的影响。最后,对作动器样件进行测试,结果显示:作动器绕组EMF中含有3次、2次、4次和5次谐波分量,且THD值达到了5.6%,电磁力波动为7.8 N,试验结果验证了对电磁力波动分析及优化的有效性。 相似文献
16.
大行程和高精度是半导体加工、光波导封装等现代精密制造领域对作动器提出的新要求,在传统作动器中这两个特性往往相互矛盾从而难以同时具备。为获得满足这一要求的作动器,基于叠层压电堆器件的特点提出了一种新型步进压电直线电机的原理,详细分析了它的作动机理,该原理方案具有较大的作动行程和较高的步进分辨率,同时其输出推力与预压力成正比,有望获得较大的推力和自锁力。在原理分析的基础上,设计了电机的结构方案并加工了样机,讨论了该电机对装配的特殊要求并对样机的装配进行了验证试验,样机作动试验结果验证了该原理方案的可行性,并且在直流偏置50 V、峰峰值为100 V、频率10 Hz的正弦电压激励下,样机的平均速度达63.3μm/s,这与理论计算的相对偏差为6.9%。 相似文献
17.
18.
设计了一种新型大推力直线压电作动器,采用螺旋箝位的方式实现对压电叠堆微小位移的累积输出,实现了大推力和长行程。对该种作动器的驱动机理和作动器设计过程中的关键技术问题进行了详细的分析,包括力矩电机的转速设计、上下柔性联轴器的扭转刚度设计、螺母和丝杠之间相关机械参数的设计以及对所选压电叠堆进行性能测试并选择其最佳工作频段。原理样机长为140 mm,最大直径为45mm,重量为0.7 kg,行程为40 mm。在力矩电机转速为300 r/min,压电堆驱动频率为100 Hz时,作动器的最大输出力可达130 N。 相似文献
19.
《振动、测试与诊断》2015,(1)
设计了一种新型大推力直线压电作动器,采用螺旋箝位的方式实现对压电叠堆微小位移的累积输出,实现了大推力和长行程。对该种作动器的驱动机理和作动器设计过程中的关键技术问题进行了详细的分析,包括力矩电机的转速设计、上下柔性联轴器的扭转刚度设计、螺母和丝杠之间相关机械参数的设计以及对所选压电叠堆进行性能测试并选择其最佳工作频段。原理样机长为140mm,最大直径为45mm,重量为0.7kg,行程为40mm。在力矩电机转速为300r/min,压电堆驱动频率为100Hz时,作动器的最大输出力可达130N。 相似文献
20.
设计了车辆主动悬架用圆筒型电磁作动器的驱动电路,制作了驱动电路所需的死区产生单元,通过AutoBox dSPACE控制系统和智能功率模块(IPM)构建了主功率回路电路,搭建起简易的实验测试平台,对所设计的电磁作动器进行了方波力和三角波力的测试。实验测试表明,所设计的驱动电路具有可行性。 相似文献