首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Texas, many miles of plain jointed concrete pavement (JCP) were constructed without proper load transfer devices such as dowels. After a number of years of service, some JCP sections without dowels showed distresses in the form of faulting at transverse joints. Some of the sections were designed in accordance with the AASHTO 1986 Guide, which required 50–75?mm thicker slabs in exchange for not using dowels. This pavement design did not work, with faulting at transverse joints that cause poor ride. Dowel bar retrofit (DBR) was performed on four projects to restore the pavement condition. Overall, DBR restored load transfer efficiency and resulted in improvement of ride quality. Even where the subbase stiffness is 5–10 times less than the minimum value required for proper performance of JCPs, properly installed DBR effectively restored pavement condition with minimum faulting after decades of service. Therefore, it indicated that DBR is able to minimize the faulting even where there is poor base/subgrade support. This is significant in that there are no effective and practical methods to improve subbase conditions in existing concrete pavement, whereas DBR can restore pavement conditions at a reasonable cost. However, not all DBR projects were successful. In one DBR project, faulting in the range of 6.4–9.5?mm occurred after less than 2 years of treatment. Forensic investigation revealed voids under the dowel bars, which indicates poor consolidation of the grout material. Efforts are currently underway in TxDOT to improve specifications for grout materials and DBR construction.  相似文献   

2.
This paper presents the results of several investigations to identify the underlying causes of longitudinal cracking problems in Portland cement concrete (PCC) pavement. Longitudinal cracking is not intended and detrimental to the long-term performance of PCC pavement. Longitudinal cracking problems in five projects were thoroughly investigated and the findings indicate that longitudinal cracking was caused by: (1) late or shallow saw cutting of longitudinal joints; (2) inadequate base support under the concrete slab; and (3) the use of high coefficient of thermal expansion (CTE) aggregates. When the longitudinal cracks were caused by late or shallow saw cutting of longitudinal joints, cracks developed at a very early stage. However, when there was adequate base support, the longitudinal cracks remained relatively tight even after decades of truck trafficking. Another cause of longitudinal cracking was inadequate base support, and cracking due to this mechanism normally progressed to rather wide cracks. Some cracks were as wide as 57?mm. Evaluations of base support by dynamic cone penetrometer in areas where longitudinal cracks were observed indicate quite weak subbase in both full-depth repaired areas and surrounding areas. This implies that the current requirements for the subbase preparation for the full-depth repair are not adequate. Another cause of longitudinal cracking was due to the use of high CTE aggregate in concrete. Large volume changes in concrete when coarse aggregate with high CTE is used could cause excessive stresses in concrete and result in longitudinal cracking. To prevent longitudinal cracking, attention should be exercised to the selection of concrete materials (concrete with low CTE) and the quality of the construction (timely and sufficient saw cutting and proper selection and compaction of subbase material).  相似文献   

3.
This paper describes results from a study evaluating stringless paving using a combination of global positioning and laser technologies. A concrete paver manufacturer and a machine guidance solution provider developed this technology and successfully implemented it on construction earthmoving and grading projects. Concrete paving is a new area for considering this technology. A concrete paving contractor in Iowa agreed to test the stringless paving technology on two challenging concrete paving projects located in Washington County, Iowa during the summer of 2003. The research team from Iowa State University monitored the guidance and elevation conformance to the original design. They employed a combination of physical depth checks, surface location and elevation surveys, concrete yield checks, and physical survey of the control stakes and string line elevations. A final check on profile of the pavement surface was accomplished by the use of the Iowa Department of Transportation Light Weight Surface Analyzer. Due to the speed of paving and the rapid changes in terrain, the laser technology was abandoned for this project. Total control of the guidance and elevation controls on the slip form paver were moved from string line to a global positioning system (GPS). Results indicate that GPS control is a feasible approach to controlling a concrete paver. Further enhancements are needed in the physical features of the slip form paver hydraulic system controls and in the computer program for controlling elevation.  相似文献   

4.
Plain jointed concrete pavements laid in Mumbai City (India) during the early 1990s were structurally evaluated using a falling weight deflectometer (FWD) and testing of concrete cores extracted from the pavement slabs. The ultrasonic pulse velocity (UPV) of the concrete in the cores was determined first and then the cores were crushed under compression. The pavement deflections were found to be within the limits as suggested in the Indian codes and the international literature. The joint conditions were also found to be satisfactory. The design strength of the concrete was back-calculated from the compressive strength of the cores and was found to conform to the design specifications. However, the construction quality was found wanting as the thickness of pavement slabs at a few locations was lower than that specified and it has resulted in cracking of the slabs. The dynamic modulus of elasticity of concrete as determined by the FWD was found to correspond well with that computed from the UPV of cores and from the compressive strength of concrete. A method is suggested to estimate the structural parameters of uncracked pavement slabs from the dynamic modulus of elasticity obtained through the indirect method of UPV testing which is less expensive compared to evaluation by the FWD.  相似文献   

5.
A section of jointed concrete pavement on U.S. 75, which was built from 1982 to 1985, in the Paris District of the Texas Department of Transportation (TxDOT) experienced severe pumping and settlement, even though two types of treatment (full depth repair and polyurethane foam injection) were performed. An extensive field investigation was conducted using ground penetrating radar, falling weight deflectometer, dynamic cone penetrometer, and coring to identify the causes of the continued pumping and settlement problems, and develop an optimal repair strategy. The pavement evaluation included tie bar condition, load transfer efficiency (LTE) at transverse and longitudinal construction joints, and base support conditions. Some of the tie bars failed in shear due to corrosion, which resulted in substantially low LTEs (<40%) at longitudinal construction joints. Pumping and settlement problems were more pronounced where the tie bars failed; the resulting large deflections exacerbated the pumping and settlement problems. The results demonstrate the importance of adequate LTEs (>80%) provided by tie bars, base and subgrade support, in providing satisfactory JCP performance. Inadequate design or construction of any of these critical elements could lead to performance problems, potentially including severe settlement, which is quite difficult to repair. To repair this pavement section, the Paris District of TxDOT is planning to retrofit tie bars by the “slot stitching” method, along with filling the voids under the slab using grout, followed by thin overlay using latex modified concrete to correct the differential elevation problems at longitudinal construction joints. It is expected that this repair strategy will address the distress problems and extend the pavement life.  相似文献   

6.
The Illinois Department of Transportation (IDOT) initiated a failure investigation to determine the distress mechanisms causing premature longitudinal cracking on continuously reinforced concrete pavements (CRCP) on several Illinois interstates. The longitudinal cracking approximately followed the embedded reinforcement steel and occurred in both the driving and passing lanes. In this paper, the results from field visual surveys, coring, and petrographic analyses are reported along with a review of archival construction and material records of the distressed CRCP sections. A laboratory forensic study was also performed on several field extracted slabs. The results of the field and laboratory investigation show the cracking was not initiated by steel corrosion, deleterious reactions in the concrete materials, or an inadequate structural design. Rather, the cracking is related to settlement of the steel bars in the concrete. Settlement cracking is conventionally thought to occur only in concrete slabs and decks with plastic (high slump) concrete and small values of bar cover depth, while the studied CRCP sections have large values of cover depth and were cast with stiff (low slump) concrete. The settlement was likely caused by the relative settlement of heavy steel bars (22?mm diameter) within the lower density concrete during the original CRCP construction. The technique of placing the steel bars in the fresh concrete (called tube-feeding) further contributed to the development of this distress, and this practice is no longer employed by IDOT.  相似文献   

7.
Longitudinal joint cracking is one of the most prevalent forms of distress in asphalt concrete pavements. The joint area does not achieve the same density as the mat due to an unconfined edge on the initial pass and a cold joint during the second pass. The lower density allows water to penetrate and the material cracks, usually within one?year of construction. There are many techniques for constructing longitudinal joints, one being to preheat the joint prior to paving the second lane. This paper describes a field study conducted in New Hampshire using an infrared joint heater. Thermocouples were embedded in the pavement to determine the extent of heat penetration from the infrared heaters. Cores were taken along the joint and in the travel lanes for both the control and test sections. Density and strength measurements were taken on the cores. Permeability measurements along the control and test joints were performed. A cracking survey performed one?year after construction showed that the section of pavement where the infrared heater was used had significantly less cracking than the control section.  相似文献   

8.
The feasibility and efficiency of a seismic retrofit intervention using externally bonded fiber-reinforced polymer composites on existing reinforced concrete frame systems, designed prior to the introduction of modern standard seismic design code provisions in the mid-1970s, are herein presented, based on analytical and experimental investigations on beam-column joint subassemblies and frame systems. A multilevel retrofit strategy, following hierarchy of strength considerations, is adopted to achieve the desired performance. The expected sequence of events is visualized through capacity-demand curves within M-N performance domains. An analytical procedure able to predict the enhanced nonlinear behavior of the panel zone region, due to the application of CFRP laminates, in terms of shear strength (principal stresses) versus shear deformation, has been developed and is herein proposed as a fundamental step for the definition of a proper retrofit solution. The experimental results from quasi-static tests on beam-column subassemblies, either interior and exterior, and on three-storey three-bay frame systems in their as-built and CFRP retrofitted configurations, provided very satisfactory confirmation of the viability and reliability of the adopted retrofit solution as well as of the proposed analytical procedure to predict the actual sequence of events.  相似文献   

9.
Concrete subjected to combined compressive stresses and temperature loading exhibits compressive strains, which are considerably greater than for concrete subjected to compressive stresses alone. This phenomenon is called transient thermal creep or load induced thermal strain and is usually modeled by macroscopic phenomenological constitutive laws which have only limited predictive capabilities. In the present study a mesoscale modeling approach is proposed in which the macroscopically observed transient thermal creep results from the mismatch of thermal expansions of the mesoscale constituents. The mesostructure of concrete is idealized as a two-dimensional three-phase material consisting of aggregates, matrix, and interfacial transition zones. The nonlinear material response of the phases is described by a plasticity interface model. The mesoscale approach was applied to analyze compressed concrete specimens subjected to uniform temperature histories and the analysis results were compared to experimental results reported in the literature.  相似文献   

10.
Large numbers of conventionally reinforced concrete deck–girder (RCDG) bridges remain in-service in the national highway system. Diagonal cracks have been identified in many of these bridges, which are exposed to millions of load cycles during service life. The anticipated life of these bridges in the cracked condition under repeated service loads is uncertain. RCDG bridges with diagonal cracks were inspected and instrumented. Strain and crack displacement data were collected under ambient traffic conditions and controlled test trucks. Results indicated relatively small stirrup stresses and diagonal cracks exhibited opening and closing under truck loading.  相似文献   

11.
Past studies have shown that initial pavement roughness greatly affects future pavement roughness and roughness progression rate. Initial pavement roughness is also an important input to the roughness prediction model in mechanistic-empirical design guide. This study analyzed the design and construction factors affecting initial pavement roughness. Initial international roughness index of 90 concrete pavements constructed in Wisconsin from 2000 to 2004 were analyzed using multiple regression method. The factors considered in this study included concrete pavement slab thickness, project location, dowel bar placement, joint spacing, base type, and pavement length. The factors affecting initial pavement roughness were identified.  相似文献   

12.
The behavior under static loading of fiber-reinforced plastic (FRP) retrofitted reinforced concrete beams, possessing a high chloride content and rebar corrosion, was studied both experimentally and analytically. The test beams were characterized as falling into three different groups according to the state of their corrosion damage: (1) natural corrosion, (2) cathodic protection, and (3) accelerated corrosion. The load carrying capacities of the beams, with or without FRP patching, were tested in the laboratory. The experimental results show that the state of corrosion of the steel, the water/cement ratio of the concrete material, and the arrangement and the number of FRP patches all affect the strength as well as the failure mechanisms of retrofitted RC beams. Some simple analytical models and a design concept for retrofitting cracked and corroded RC beams with FRP sheets are also presented and discussed.  相似文献   

13.
The objective of this paper was to study and optimize the concrete paving operations taking place in the reconstruction project of Interstate-74 using computer simulation. To achieve this objective, field data were collected during construction, and were then used to determine adequate probabilistic density functions for the activities’ duration and to test a developed simulation model. Upon testing, the developed model was used to study the impacts of resources on the flow of operations and on the cost effectiveness of the construction process. In general, application of simulation methods to concrete paving operations was successful and its accuracy was acceptable as compared to field measurements. Based on the results of a sensitivity analysis of the critical resources, multiple factors were considered in the decision-making process to ensure that all aspects of the operation are evaluated. This includes total operation time, productivity, costs of the operation, average truck delay, and idle times for the paver and the spreader. For the conditions pertinent to this construction site, ten trucks, one paver and one spreader, and three finishing and plastic-covering crews are recommended. Using this set of resources would result in a prompt and effective execution of the operation. Practical implementation and limitations of the developed model in similar construction operations is discussed.  相似文献   

14.
Vast governmental budgets are spent annually to face corrosion problems of steel reinforcement in concrete bridges attributable to the extensive use of deicing salts. Corrosion controls the lifetime of a bridge, which has two distinct periods. During the first period, chlorides diffuse through the cover. When sufficient chlorides are formed at the rebars, corrosion initiates. This marks the start of the second period, during which rust with higher volume to bare steel is produced. The rust puts pressure on the cover, which finally leads to cover spalling. In this paper, a model is developed to determine the time span of the second period. The model includes a volume compatibility condition that allows for the proper introduction of compaction of all materials that contribute to cover spalling, including the rust. A new condition for marking failure of the cover is also established, based on fracture mechanics and strain energies. Finally, a new formula is proposed for the rate of rust production, which allows for the constant rust production at early and nonlinear diffusion dependant rates at latter stages of corrosion.  相似文献   

15.
The majority of experimental work involving the flexural retrofit of concrete bridge girders has been conducted on beam specimens with adhesive-applied, soffit-mounted, fiber-reinforced polymer (FRP) composite systems, referred to in this study as conventional adhesive application (CAA). It has been observed that the performance of such girders is often controlled by the quality of the bond between the FRP and the concrete substrate and the substrate’s ability to transfer stress from the steel to the FRP. With the goal of improving the performance of bonded FRP in mind, two additional soffit-mounted retrofit schemes are investigated: near-surface mounted (NSM), where the FRP strips are embedded in adhesive within slots cut into the substrate concrete, and, powder-actuated fastener-applied (PAF) FRP, which uses a powder-actuated nail gun to install mechanical fasteners through predrilled holes in the FRP into the concrete substrate, “nailing” the FRP in place. The PAF application is a recent development, and little work has been done on it other than by the proprietors of the system. This study reports on a comparative study of the static and fatigue performance of reinforced concrete beams retrofitted with CAA, NSM, and PAF FRP retrofit systems. Ten medium-scale beams were tested: six strengthened specimens, two per retrofit method, were tested under cyclic loading conditions, and four specimens, one per retrofit method and one control specimen, were tested monotonically to failure. The results of this study indicate that although all three methods of FRP application result in significant strength increases over the control specimen under monotonic loading conditions, the CAA method is outperformed by the other methods under cyclic conditions. A number of other relevant detailed conclusions with respect to performance and practical application issues are presented for each of the methods of retrofit examined in this study. Significantly, clear evidence of FRP debonding in the midspan region prior to specimen failure is presented.  相似文献   

16.
Where faulting takes place due to the absence of dowel bars and inadequate subbase support in jointed concrete pavement (JCP), dowel bar retrofit (DBR) is used to improve load transfer efficiency (LTE) and to prevent further faulting of slabs at transverse joints. Even though DBR generally improves LTEs and overall performance of JCPs, not all DBR projects have been successful. Faulting reoccurred within 2?years after DBR treatment on US59 in Texas. An investigation from the cores taken in the project revealed excessive voids under a dowel bar due to poor consolidation of the grouting material. A laboratory investigation was performed to determine the most critical factors for adequate consolidation of grouting materials in DBR. Typical rapid-setting grout materials widely used in DBR were selected and full-scale specimens were made for evaluations. Four testing variables for consolidation performance were investigated: time of placement after mixing, vibration time, slot width, and maximum aggregate size. Maximum aggregate size and slot width were not critical factors for consolidation performance of grout. The most significant factor was vibration time. Twenty s of vibration is recommended. Placement time was also an important factor, with grout materials placed after initial set performing poorly. Delayed placement of grout materials without vibration led to the most voids under the dowel bars.  相似文献   

17.
The environmental load of fiber-reinforced polymer (FRP) reinforced pavement was compared with that of steel reinforced pavement. Replacing steel rebars with FRP rebars can lead to changes in the concrete mix and pavement structure at the erection stage, to a reduced need for maintenance activities related to steel corrosion, and to different recycling opportunities at the disposal stage. The current study examined all of these variables. The environmental load of FRP reinforced pavement was found to be significantly lower than that of steel reinforced pavement. This results mainly from the fact that FRP reinforced pavement requires less maintenance, its cement content and concrete cover over reinforcement can be reduced, and the reinforcement itself generates a smaller environmental load.  相似文献   

18.
In the present paper the mechanical and acoustic emission (AE) behaviors of full-scale reinforced concrete beams are evaluated. One of the beams was constructed in two parts, which were assembled later in order to evaluate the effect of the joints in the structural behavior. The load was applied by means of a four-point-bending configuration. It is revealed that at initial stages of loading, the conventional measurements of strain and deflection, as well as pulse velocity, do not show any discrepancy, although the structural performance of the two beams is eventually proven to be quite different. On the contrary, AE parameters, even from early load steps, indicate that the damage accumulation is much faster in the assembled beam. This is confirmed by the calculated sources of AE events which are close to the construction joints. The results show that the AE technique is suitable to monitor the deterioration process of full-scale structures and yields valuable information that cannot be obtained at the early stages of damage by any other way.  相似文献   

19.
This paper studies a Kansas Department of Transportation welded plate girder bridge that developed fatigue cracks at small web gaps close to the girder top flange. Repair had been previously performed by softening the connection plate end with a slot retrofit, but cracks were recently found to have reinitiated at some of the repaired details and are again propagating. A comprehensive finite-element method study was performed to investigate the cracking behavior observed in the bridge and to recommend appropriate measures for future bridge retrofit. The analytical results show that stresses developed at the top flange web gaps could exceed yielding under the loading of an HS15 fatigue truck. The current slot repair used in the bridge was found to have introduced higher magnitude fatigue stresses in the web gap. To achieve a permanent repair of the bridge, it is recommended that a welded connection plate to flange attachment be used during future bridge retrofit. The web gap details should be able to withstand unlimited number of load cycles once this additional repair is performed.  相似文献   

20.
The flexural capacity of concrete beams can be efficiently and effectively improved through bonding fiber-reinforced plastic (FRP) plates to the tensile side. Failure of the strengthened member often occurs through debonding of the FRP from the concrete substrate. If the ultimate FRP strain at debonding failure is known, the moment capacity of the member can be obtained through a simple section analysis. In the American Concrete Institute (ACI) Design Guideline, simple empirical equations are proposed to find the ultimate FRP strain in terms of the FRP stiffness alone. However, when the proposed equations are compared to experimental data, a very large scatter is observed, indicating that the effect of other parameters cannot be neglected. In the present investigation, a new empirical approach to obtain the FRP debonding strain is developed. With a comprehensive experimental database of 143 tests, a neural network relating the ultimate FRP strain to various geometric and material parameters is trained and validated. Using the validated network, an empirical design curve and several correction equations are generated to provide a simple means to find the debonding strain in practical design. Through use of the chart and equations, the calculated ultimate failure moments for the 143 tests in our database are found to be in good agreement with experimental results. The applicability of the new empirical approach to the failure prediction of strengthened members is thus demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号