首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the Organic Light-Emitting Diodes (OLEDs) have a multilayered structure composed of functional organic layers sandwiched between two electrodes. Thin films of small molecules are generally deposited by thermal evaporation onto glass or other rigid or flexible substrates. The interface state between two organic layers in OLED device depends on the surface morphology of the layers and affects deeply the OLED performance. The morphology of organic thin films depends mostly on substrate temperature and deposition rate. Generally, the control of the substrate temperature allows improving the quality of the deposited films. For organic compounds substrate temperature cannot be increased too much due to their poor thermal stability. However, studies in inorganic thin films indicate that it is possible to modify the morphology of a film by using substrate vibration without increasing the substrate temperature. In this work, the effect of the resonance vibration of glass and silicon substrates during thermal deposition in high vacuum environment of tris(8-quinolinolate)aluminum(III) (Alq3) and N,N′-Bis(naphthalene-2-yl)-N,N′-bis(phenyl)-benzidine (β-NPB) organic thin films with different deposition rates was investigated. The vibration used was in the range of hundreds of Hz and the substrates were kept at room temperature during the process. The nucleation and subsequent growth of the organic films on the substrates have been studied by atomic force microscopy technique. For Alq3 and β-NPB films grown with 0.1 nm/s as deposition rate and using a frequency of 100 Hz with oscillation amplitude of some micrometers, the results indicate a reduction of cluster density and a roughness decreasing. Moreover, OLEDs fabricated with organic films deposited under these conditions improved their power efficiency, driven at 4 mA/cm2, passing from 0.11 lm/W to 0.24 lm/W with an increase in their luminance of about 352 cd/m2 corresponding to an increase of about 250% in the luminance with respect to the same OLEDs fabricated in the same way and with the same conditions without substrate vibration.  相似文献   

2.
Poor electron injection is a great concern for organic light emitting diodes (OLEDs). In order to improve the electron mobility, inserting organic superlattice structures in the electron transport layer was investigated in conventional OLEDs configuration. The superlattices are composed of alternating tris(8-hydroxyquinoline aluminium (Alq3) and copper phthalocyanine (CuPc) thin films, which are used as electron and hole injection layers. Experimental results show superlattices with a 6-nm period have the largest injected current. Reduction of turn-on voltage and resistance of superlattice OLEDs were also observed. After thermal annealing, the current-voltage characteristic changes and shows the possibility of layer intermixing in organic superlattices.  相似文献   

3.
The effect of dry process and wet process on the characteristics of phosphorescence organic light-emitting devices (OLEDs) employing a phosphorescent dye fac-tris(2-phenylpyridine) iridium(III) (Ir(ppy)3) doped into a methoxy-substituted starburst low-molecule material methoxy-substituted 1,3,5-tris[4-(diphenylamino) phenyl]benzene (TDAPB) are investigated. The FT-IR and absorption spectra of TDAPB films fabricated by a dry process, and a wet process are almost same, and the PL spectra of those films are different. The carrier transport capability of TDAPB by a dry process is lower than that by a wet process. The photoluminescence intensity of Ir(ppy)3 doped in TDAPB fabricated by a wet process is higher than that by a dry process. A maximum external current efficiency of more than 20 cd/A and luminance of more than 10,000 cd/m2 were obtained. Maximum luminance of devices monotonously decreases with increasing the thickness of a dry-processed emitting layer. The main emission zone of the OLED was located in almost at the center of the emitting layer. The improvement of device performance in the OLED fabricated by a wet process was achieved due to the high efficient energy transfer from TDAPB to Ir(ppy)3, high carrier transporting capability and the formation of homogeneous film, compared with that fabricated by a dry process.  相似文献   

4.
The light extraction efficiencies of organic light emitting diodes (OLEDs) utilizing various kinds of porous alumina films with different pore diameters were investigated. The OLEDs with the porous alumina film deposited on the glass surface were fabricated to improve their light extraction efficiency. The porous alumina film was fabricated by using a two step anodizing electrochemical procedure. The current densities as functions of the applied voltage do not significantly change, regardless of the existence and the magnitude of the pore diameter in the porous alumina film. The luminance efficiency of the OLEDs increased with increasing pore diameter. The luminance efficiency of the OLEDs utilizing the porous alumina film with a pore diameter of 70 nm was enhanced approximately 9% in comparison with that of the OLEDs without the porous alumina film. These results indicate that highly efficient OLEDs can be fabricated using a porous alumina film with an optimum pore diameter.  相似文献   

5.
The paper presents PbZr x Ti1−x O3 (PZT) thick/thin films fabricated by spray and spin coating technologies. The PZT sol-gel is prepared by mixing PZT powder and PZT solution, and fabricated on the aluminum and nickel substrates for several layers. After drying, firing and annealing, the films were polarized by the corona poling technique. The average thicknesses of fabricated films were 3 and 10 μm for spin and spray coating techniques, respectively. The dielectric characteristics and orientation of films had been measured by LCR meter, XRD for comparison. The crystallization of the PZT structure fabricated by a spin coating technique was denser than that by a spray coating technique, especially for thicker layers. The dielectric constant increased with coating layers, and the dissipation factor decreased with coating layers. The films fabricated by a spray coating technique had better performance on these two parameters than those by the spin coating one.  相似文献   

6.
High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) doped in 4,4′-Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy)3 on a 40 nm thick 4,4′,4″-tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure.  相似文献   

7.
可以图形化和沉积同时进行的镀膜技术可有效简化器件制备流程, 从而降低成本。本工作研究了一种新型的图形化沉积镀膜技术-微流控法: 将宽度及间隔均为80 μm、沟槽深度为2 μm左右的PDMS模板与衬底贴合构筑微流通道, 毛细力作用下前驱液可在微流通道内流动, 并在衬底表面形成图形化的液膜, 最后经热处理完成图行化的薄膜沉积。此外, 分析了硝酸镍/2-甲氧基乙醇前驱体的热分解过程和不同温度退火下前驱体粉末的相结构演化规律。最终利用微流控法图形化沉积技术制备了图形化的氧化镍沟道, 并构筑了薄膜晶体管器件。优化后的薄膜晶体管表现出典型的p型特征, 场效应迁移率可达0.8 cm2·V-1·s-1。  相似文献   

8.
Tungsten oxide (WO3) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.  相似文献   

9.
The preparation of thin AlVO4 films on corundum substrates for possible sensor application is described. Thermally stable, crack-free thin films having thicknesses typically below 0.1 μm were obtained by a sol-gel process using alkoxide reagents combined with a spin-coating technique. The films were structurally characterized by XRD, Raman and FTIR spectroscopy and their morphology was analyzed by SEM. XRD showed that the films consisted almost exclusively (> 90%) of AlVO4 after calcination at 923 K.  相似文献   

10.
Stacks of up to five relief patterned functional oxide thin films were obtained by a low-cost and low-tech soft-lithographic patterning technique. Micromolding was used to pattern a film of a metal-organic precursor solution for Y-stabilized ZrO(2) (YSZO). Subsequent drying and pyrolysis yielded a line-patterned YSZO film. The process was repeated up to four times with a precursor solution for BaTiO(3) on top of the YSZO film, resulting in stacks of YSZO and BaTiO(3) lines with well-defined edges. This approach presents a step forward on the way to a versatile additive micropatterning technique with which simple multi-material device structures can be fabricated in a reliable, fast, and cost-effective manner.  相似文献   

11.
Thin films of N,N′-bis-(3-Naphthyl)-N,N′-biphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), tris-(8-hydroxyquinoline)-aluminum (Alq3) and their blends prepared by spin-coating process were investigated. Experimental results revealed that the NPB films prepared by spin-coating process have smoother surface than that of Alq3, which was attributed to their different molecular structures. Organic light-emitting devices (OLEDs) with emitting layer prepared by spin-coating the blends of NPB and Alq3 exhibited a maximum luminance and a current efficiency over 10,000 cd/m2 and 3.8 cd/A respectively, and when 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-[l]benzopyrano[6,7,8-ij]quinolizin-11-one was doped in, a current efficiency of 8 cd/A can be obtained. Comparative device performance to the vapor-deposited OLEDs suggested that solution-process could be an alternative route for the fabrication of OLEDs based on Alq3.  相似文献   

12.
结合光刻印技术和HfO2液相自组装沉积成膜技术,在单晶硅表面成功地制备了具有微米级图案结构的HfO2薄膜,该硅基图案化HfO2微结构近来在工业界特别是微电子领域引起极度的关注.X射线衍射(XRD)与扫描电镜(SEM)显示,在图案区域成功制备了HfO2薄膜,EDS能谱测试显示了图案区域的HfO2薄膜的化学组成.  相似文献   

13.
We report highly efficient gas diffusion barriers for organic light emitting diodes (OLEDs) with an encapsulation structure composed of alternating magnesium fluoride (MgF2) and zinc sulfide (ZnS) layers grown by vacuum thermal deposition. The half lifetime of yellow OLEDs under an initial luminance of 2000 cd/m2 with rubrene as an emitter reached 245 h using three pairs of MgF2/ZnS layers. The device lifetime was obviously improved using MgF2 and ZnS as passivation layers before UV-cured epoxy seal without desiccant with the lifetime for the initial luminance dropping to 56% being over 500 h. This simple and inexpensive encapsulation method can potentially be applied to top-emitting OLEDs due to good light transmission characteristic of the passivation film.  相似文献   

14.
As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m2. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.  相似文献   

15.
This study examined the anode material properties of Ga-doped zinc oxide (GZO) thin films deposited by pulsed DC magnetron sputtering along with the device performance of organic light emitting diodes (OLEDs) using GZO as the anode. The structure and electrical properties of the deposited films were examined as a function of the substrate temperature. The electrical properties of the GZO film deposited at 200 °C showed the best properties, such as a low resistivity, high mobility and high work function of 5.3 × 10− 4Ω cm, 9.9 cm2/Vs and 4.37 eV, respectively. The OLED characteristics with the GZO film deposited under the optimum conditions showed good brightness > 10,000 cd/m2. These results suggest that GZO films can be used as the anode in OLEDs, and a lower deposition temperature of 200 °C is suitable for flexible devices.  相似文献   

16.
Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CFx) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO2) and aluminum oxide (Al2O3). While the CFx layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10− 6 g/m2/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.  相似文献   

17.
The opaque metal grid electrodes are introduced to fabricate top emitting organic light emitting diodes (TOLEDs) through metal transfer technique. To transmit the lights, micrometer-sized patterns of aluminum (Al) were utilized as top cathodes in OLEDs and Al mirrors were also deposited at the other side of transparent substrates to reflect the lights emitted at the bottom sides. Although the only 50% of brightness compared to bottom emitting OLEDs (BOLEDs) could be achieved theoretically, the actual devices showed more than 70% based on the compressive effects during the metal transfer process. Since the resolution of human eyes recognizes these micrometer-sized grid structures as one pixel, TOLEDs can be simply fabricated without significant loss of efficiency.  相似文献   

18.
It will be interesting and valuable information can be achieved if a direct comparison between organic light emitting devices (OLEDs) fabricated by vacuum evaporated method (vac) and solution-based manufacturing processes (sol) was realized. Small molecular OLEDs with a mixed organic layer structure (MOLOLEDs) make it possible for direct comparison between devices with the same materials but fabricated by the two processing methods. This article shows a direct comparison of the luminescence characteristics, charge conduction, and device physics between MOLOLEDs fabricated by vac- and sol-processing techniques. It gives an elementary explain how the organic/metal interfaces influence the charge conduction and device performance.  相似文献   

19.
In an effort to investigate the extraordinary photoelectrochemical characteristics of nanostructured CdS thin films in promising photovoltaic device applications, the patterned CdS microarrays with different feature sizes (50, 130, and 250 μm in diameter) were successfully fabricated on indium tin oxide (ITO) glass substrates using the chemical bath deposition method. The ultraviolet lithography process was employed for fabricating patterned octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) as the functional organic thin layer template. The results show that the regular and compact patterned CdS microarrays had been deposited onto ITO glass surfaces, with clear edges demarcating the boundaries between the patterned CdS region and substrate under an optimal depositing condition. The microarrays consisted of pure nanocrystalline CdS with average crystallite size of about 10.7 nm. The photocurrent response and the optical adsorption of the patterned CdS microarray thin films increased with the decrease of the feature size, which was due to the increased CdS surface area, as well as the increased optical path length within the patterned CdS thin films, resulting from multiple reflection of incident light. The resistivity values increase with the increase of feature size, due to the increase of the relative amount of gaps between CdS microarrays with increasing the feature size of patterned CdS microarrays.  相似文献   

20.
Circularly polarized organic light‐emitting diodes (CP‐OLEDs) are particularly favorable for the direct generation of CP light, and they demonstrate a promising application in 3D display. However, up to now, such CP devices have suffered from low brightness, insufficient efficiency, and serious efficiency roll‐off. In this study, a pair of octahydro‐binaphthol ( OBN )‐based chiral emitting enantiomers, (R/S)‐OBN‐Cz , are developed by ingeniously merging a chiral source and a luminophore skeleton. These chirality–acceptor–donor (C–A–D)‐type and rod‐like compounds concurrently generate thermally activated delayed fluorescence with a small ΔEST of 0.037 eV, as well as a high photoluminescence quantum yield of 92% and intense circularly polarized photoluminescence with dissymmetry factors (|gPL|) of ≈2.0 × 10?3 in thin films. The CP‐OLEDs based on (R/S)‐OBN‐Cz enantiomers not only display obvious circularly polarized electroluminescence signals with a |gEL| of ≈2.0 × 10?3, but also exhibit superior efficiencies with maximum external quantum efficiency (EQEmax) up to 32.6% and extremely low efficiency roll‐off with an EQE of 30.6% at 5000 cd m?2, which are the best performances among the reported CP devices to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号