首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为了系统地研究稀土Gd对铸造Al-Si-Mg(A357)合金组织和性能的影响,采用OM,SEM,EPMA,XRD,DSC,TEM及拉伸实验等方法对不同Gd含量A357合金进行研究。结果表明:Gd的添加可以细化A357合金的晶粒并减小二次枝晶间距。此外,Gd可以有效地细化合金中的共晶硅,但是对片状共晶硅的形貌影响不大。晶粒和共晶硅的细化及二次枝晶间距的减小使添加Gd后的A357合金的力学性能有了显著的提高。其中,A357-0.5Gd(质量分数/%)合金热处理态抗拉强度为355MPa,相对于未添加Gd元素的A357合金提高了37MPa。当Gd质量分数为1.0%时,尽管组织得到进一步细化,但是大量粗大Al 2Si 2Gd第二相的形成导致了合金力学性能的下降。同时对Gd的细化机制进行探究,结合TEM分析结果可以推断,Gd变质处理后共晶硅上的孪晶密度并不足以引起共晶硅形貌的转变,使得Gd变质效果较弱。而Gd对共晶硅的细化作用可能与Gd增加成分过冷以及形成纳米相阻碍共晶硅生长有关。  相似文献   

2.
Abstract

The capacity of AlTi5B1, AlTi3B3 and AlB3 grain refiners to refine the grain structures of AlSi7Mg and AlSi11Cu2 foundry alloys was investigated. The performance of AlTi5B1, well established to be the best grain refiner for wrought aluminium alloys, is not nearly as good with the AlSi7Mg and AlSi11Cu2 alloys. Relatively smaller grains are obtained with the AlTi3B3 grain refiner in both alloys. The AlB3 grain refiner, on the other hand, improves the grain structure only as much as the AlTi5B1 grain refiner does. With as much as 0·04–0·1 wt-%Ti, the commercial alloys cannot enjoy the outstanding potency of the AlB2 particles since the B supply is readily transformed to TiB2 particles. However, the grains of the Ti free AlSi7Mg and AlSi11Cu2 alloys (~0·005 wt-%Ti) are very small and nearly globular for the entire range of holding times when inoculated with AlB3, implying not only a remarkable grain refining capacity but also a strong resistance to fading of the grain refinement effect. The lack of Ti in the melt allows the entire B to form AlB2 particles, the perfect substrates to promote the nucleation of α-Al crystals. Aluminium castings can enjoy grain sizes well below 200 μm, with an addition of 0·02 wt-%B, provided that they are Ti free. That the potent substrates are made available just before the nucleation of α-Al crystals avoids fading effects and is a further advantage of the AlB3 grain refiner in recycling operations.  相似文献   

3.
Herein, the microstructure control and performance evolution of hypereutectic Al–20Mg2Si alloy with the addition of novel Al–3.3Ca–10Sb master alloy are investigated. It is found that AlCa11Sb9 and CaSb2 compounds are successfully synthesized through in situ melt reaction of masteralloy. With 0.45 wt% Al–3.3Ca–10Sb master alloy addition, primary Mg2Si particles in hypereutectic Al–20Mg2Si alloy are significantly refined from more than 150 μm to 10.7 μm, which are accompanied with the 3D morphologies changing from dendrites to octahedrons. After heat treatment, Brinell hardnesses of Al–20Mg2Si alloys are remarkably improved to 112 HB. Furthermore, it is also found that the cooling rate of Al–3.3Ca–10Sb master alloys has certain influence on the refinement effect of Al–Mg2Si alloys. The excellent complex modification of this master alloy on Al–20Mg2Si alloy can be attributed to the existence of CaSb2 particles as the heterogeneous nucleation sites of Mg2Si particles and the inhibiting growth effect of residual Ca atoms adsorbed on the surface of Mg2Si phase.  相似文献   

4.
The microstructures and impact toughness of Al-7Si and Al-7Si-2.5Cu cast alloys were studied after various melt treatments like grain refinement and modification. The results indicate that combined grain refined and modified Al-7Si-2.5Cu alloys have microstructures consisting of uniformly distributed α-Al grains, interdendritic network of fine eutectic silicon and fine CuAl2 particles in the interdendritic region. These alloys exhibited improved impact toughness in as cast condition when compared to those treated by individual addition of grain refiner or modifier. The improved impact toughness of Al-7Si-2.5Cu alloys are related to breakage of the large aluminum grains and uniform distribution of eutectic silicon and fine CuAl2 particles in the interdendritic region resulting from combined refinement and modification. This paper attempts to investigate the influence of microstructural changes in the Al-7Si and Al-7Si-2.5Cu cast alloys by grain refinement, modification and combined action of both on the impact toughness.  相似文献   

5.
The microstructures and dry sliding wear behavior of Al–7Si and Al–7Si–2.5Cu cast alloys were studied after various melt treatments like grain refinement and modification. Results indicate that combined grain refined and modified Al–7Si–2.5Cu cast alloys have microstructures consisting of uniformly distributed α-Al grains, eutectic Al– silicon and fine CuAl2 particles in the interdendritic region. These alloys exhibited better wear resistance in the cast condition compared with the same alloy subjected to only grain refinement or modification. The improved wear resistances of Al–7Si–2.5Cu cast alloys are related to the refinement of the aluminum grain size, uniform distribution of eutectic Al-silicon and fine CuAl2 particles in the interdendritic region resulting from combined refinement and modification. This paper attempts to investigate the influence of the microstructural changes in the Al–7Si and Al–7Si–2.5Cu cast alloys by grain refinement, modification and combined action of both on the sliding wear behavior.  相似文献   

6.
In this paper, with the combinative addition of La and B elements, the grain refinement of Al–Si alloys with different contents of Si was achieved. Compared to individual addition of B element, the combinative addition of La and B elements can effectively refine the grains of Al–Si alloys. The addition of La element suppresses the mutual poisoning between Sr and B elements, benefiting the formation of a fully modified eutectic silicon structure in the Al–Si alloys. This work also indicates that the tensile properties, especially the elongation, of Al–Si alloys are enhanced with the addition of La element.  相似文献   

7.
Abstract

The relationships of diboride phases in Al–Ti(Zr)–B alloys with a variable Ti/B ratio close to the stoichiometry of TiB2 were studied. The formation of diboride solid solutions was confirmed. A grain refinement mechanism is proposed as that diboride particles in the Al–Ti–B master alloys reacting with aluminium upon adding into an aluminium melt and release titanium into the melt through forming a (Ti,Al)B2 solid solution and maintain a thin dynamic Ti rich layer on the surfaces of the (Ti,Al)B2 particles, which nucleates α-Al grains in solidification. The poisoning effect of zirconium on grain refinement of aluminium by Al–Ti–B master alloys is also discussed.  相似文献   

8.
《Materials Letters》2003,57(16-17):2523-2529
In the present study, the diversified morphologies of Si phase and La-rich phase in as-casted hypereutectic Al–Si–xLa alloys are presented and investigated. The morphological features were examined using conventional optical microscopy and SEM for observations conducted on the optical samples and deep-etched samples, respectively. The results show that primary Si crystals show several morphologies, such as feathery, star-shaped, faceted polygonal, platelet and so on. There are three types of fivefolded Si crystals existing in the present study, fivefold symmetry as radial growth alone: thin-branched, coarse-branched and well-defined star-shaped growing from the preferred growth from the tips of branches. The eutectic Si in unmodified Al–Si alloys appears only in fibrous morphology, while discrete and interconnected coral and rodlike eutectic Si particles were observed in alloys with the addition of La. The La-rich phase also grows into a variety of morphologies, such as needlelike, broken rodlike in pores, spherical, and flat platelet. In optical microscopy, La-rich phase is observed to envelope some small polygonal Si crystals.  相似文献   

9.
The mechanism of damage evolution and fracture in A357 casting alloys was investigated by in-situ scanning electron microscopy (SEM) tensile testing. Different microstructures of A357 casting alloys were produced by eutectic Si modification and T6 heat treatment. It is shown that microcracks in these alloys are predominantly formed in eutectic Si particles. Large and elongated eutectic Si particles in unmodified alloy show the greater tendency to cracking, whereas cracking of small and round eutectic Si particles in Sr modified and T6 heat treated alloys is relatively lag. The crack mainly propagates along the broken eutectic Si particles in unmodified and Sr modified alloys or along the deepened shear bands in T6 heat treated alloy with accumulating the applied strain. The results were discussed in terms of Weibull statistics and the fracture models were established.  相似文献   

10.
Microstructural observation and thermal analysis of Al-21 wt % Si alloys with different rare earth metals were performed to examine the effect of rare earth metal on the refinement of primary silicon phase. Simultaneous refinement of both primary and eutectic silicon morphology is achieved with the addition of rare earth and its effect increases with the amount of rare earth addition and cooling rate. Depression of 12–17 °C in primary reaction temperature and 2–7 °C in eutectic temperature is measured with the addition of rare earth. Rare earth bearing compounds were not believed to act as a nucleation agent of primary silicon phase. Some rare earth bearing compounds determined to AlCe were around primary silicon in the matrix. The twin density of eutectic silicon remains same regardless of the addition of rare earth. The refinement of silicon in rare earth treated hypereutectic Al-Si alloys is supposed to be due to the suppression of the nucleation temperature of silicon phase.  相似文献   

11.
An investigation has been made on the effect of a direct magnetic field on the structure of eutectic Al-11 wt pct Si alloy. At the superheated temperature of 750 degreesC, a separated eutectic structure in the alloy occurs under the condition of the magnetic induction intensity up to 0.24 T. A great number of primary Si particles in the Al-11 wt pct Si alloy are segregated to the surface layer of the specimens. The microstructure of the alloy consists of primary Si particles in the surface layer and Al Matrix in the inner part of the specimen. Moreover, the higher the superheated temperature, the more remarkable the segregation trend. The mechanism of the formation of separated eutectic has been discussed.  相似文献   

12.
The effects of Bi content as a trace element on the microstructure and the solidification path of A356.2 alloy have been investigated. The alloys containing different Bi levels (0, 20, and 200 ppm) have been modified by sodium. The experimental alloys have been thermally analyzed by using the two-thermocouple method. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different Bi and Na concentrations. The results indicate how the presence of Bi as a trace element affects the eutectic structure. Upon increasing the Bi level, the nucleation and growth temperatures of eutectic Si raise, and the eutectic Si particles appear coarser in Na-modified alloys. The EBSD analyses show that the crystallographic orientation between eutectic Al and surrounding primary Al dendrites becomes identical in Na-modified Bi-containing alloy. Furthermore, an irregular Bi + (Mg,Na)3Bi2 eutectic is formed prior to the precipitation of the eutectic Si, thus reducing the efficiency of Na addition to fully modify the eutectic Si.  相似文献   

13.
Abstract

Grain refinement in Al–Si alloys with silicon contents in the range of 0·2–30 wt-% has been studied in detail with conventional as well as higher level additions of a Al–5Ti–1B master alloy. A poisoning effect was observed with Al–Si alloys containing ≥7 wt-%Si and the extent of poisoning increased with an increase in the silicon content. Silicon improves the grain refining behaviour of aluminium when added in small quantities (0·2%). Magnesium can counteract the poisoning effect of silicon. The optimum level of magnesium required to overcome the poisoning effect depends on the silicon content of the alloy. Higher level additions of a grain refiner could overcome the poisoning effect of silicon and the level required to achieve good grain refinement is a function of the silicon and magnesium contents of the alloy. The present paper also reports the influence of degasser and melt temperature on the grain refining response of Al–Si alloys.  相似文献   

14.
Abstract

The microstructures of four different AlTiC master alloys produced through a new method involving the reaction of pure Ti and carbon in an Al melt have been examined using XRD, SEM, EPMA, and TEM, and their refining efficiencies tested. Individual TiC particles were found to be single crystals with polyhedral or spherical morphologies. In addition to the aluminium matrix, Al - 5Ti - 0.3C (wt-%) refiners contain TiC and TiAl3 phases, whereas Al - 8.4Ti - 1.8C contains only TiC. Three types of agglomerating behaviour of TiC particles, namely discrete particles, homogeneously distributed clusters, and compact blocks along grain boundaries, were found in master alloys produced at different temperatures, and these further influence the refining performances. Ti was found to play an important role in the refinement of Al by AlTiC refiners; observation of grain centres showed that TiC particles are located at the grain centre and the excess Ti segregates to them and forms a roselike structure around them. It is clear that the refinement of Al by AlTiC results from the combined action of TiC and Ti, and it is possible that AlTiC and AlTiB share some common rules in refining Al. Possible refinement mechanisms have been discussed based on microstructure observations and previous studies.  相似文献   

15.
The microstructures, machinability and surface characteristics of Al-7Si and Al-7Si-2.5Cu cast alloys were studied after various melt treatments like grain refinement and modification. The results indicate that combined grain refined and modified Al-7Si-2.5Cu cast alloys have microstructures consisting of uniformly distributed α-Al grains, eutectic Al-silicon and fine CuAl2 particles in the interdendritic region. These alloys exhibited better machinability and surface characteristics in the cast condition compared with the same alloy subjected to only grain refinement or modification. Performances of the turning inserts (uncoated and polished CVD diamond coated) were evaluated in machining Al-7Si and Al-7Si-2.5Cu cast alloys under dry environment using a lathe. The polished CVD diamond coated insert outperformed the uncoated cutting insert which suffered from sizeable edge buildup leading to higher cutting force and poor surface finish. The polished CVD diamond coated insert shows a very small steady wear without flaking of the diamond film during cutting. This paper attempts to investigate the influence of grain refinement, modification and combined action of both on the microstructural changes in the Al-7Si and Al-7Si-2.5Cu cast alloys and their machinability and surface finish when different turning inserts are used.  相似文献   

16.
The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al–Si casting alloys were investigated and recorded for this study. Mischmetal was added to the alloys in the form of Al–20% mischmetal master alloy to produce four levels of mischmetal addition (0, 2, 4 and 6 wt%). The alloys were also modified with strontium (250 ppm) to study the combined modification effect of Sr and mischmetal at both high and low cooling rates corresponding to dendrite arm spacings of 40 and 120 μm, respectively. The alloys were subjected to solution heat treatment (495 °C/8 h for A319.1 and A413.1 alloys, and 540 °C/8 h for A356.2 alloy) to investigate its effect on the eutectic Si particle morphology.

An optical microscope-image analyzer system was used to measure the characteristics of eutectic Si particles such as area, length, roundness ratio and aspect ratio, in order to monitor the modifying effect of mischmetal, as well as the combined modification effect of mischmetal and Sr. For each alloy sample examined, the Si particle characteristics were measured over an area of 50 fields and the average particle characteristics were thus determined.

The eutectic Si particle measurements revealed that partial modification was obtained with the addition of mischmetal while full modification was achieved with the addition of Sr in the as-cast condition, at both high and low cooling rates. The interaction between Sr and mischmetal was observed to weaken the effectiveness of Sr as a Si particle-modifying agent. This effect was particularly evident at the low cooling rate.

During solution heat treatment, the eutectic Si particles in the non-modified alloys underwent rapid coarsening, otherwise known as Ostwald ripening, whereas those in the Sr-modified alloys exhibited a high spheroidization rate. The coarsening was evidenced by an increase in the thickness of the Si particles, clearly observed in the A356.2 alloy at both cooling rates. In the alloys containing mischmetal, the presence of this mixture of rare earth elements reduced the coarsening of the Si particles slightly.  相似文献   


17.
Although refinement of the as‐cast grain size of magnesium alloys by Zr is well established commercially, little research has been undertaken to optimize this refinement technology and to quantify the relative performance of different Mg–Zr master alloys. The performance of Mg–Zr master alloys was found to be related to (1) the number density of Zr particles between 1 and 5 µm in size where the master alloy with the largest number density of these particles exhibits the best refinement, and (2) the alloy's growth restriction factor (Q) where a linear relationship between grain size and 1/Q, was found to exist for each master alloy. An equation for predicting grain size based on the Interdependence model was developed. Further, the Interdependence Model was improved to be able to cater for an increasing Zr particle number density with increasing values of Q.  相似文献   

18.
Si对AM50力学性能和高温蠕变性能的影响   总被引:3,自引:0,他引:3  
在基体合金AM50中分别加入Si和Ca,研究了Si和Ca对AM50-xSi合金的微观组织、力学性能及蠕变性能的影响.结果表明:加入Si后,合金高温蠕变性能随Si量的增加而增加并超过了AS41的水平;在AM50-xSi中加入微量Ca以后,合金中的Mg2Si相得到细化,从汉字状转变成颗粒状,室温及150℃拉伸性能明显提高.  相似文献   

19.
Microstructure and mechanical properties of as-cast and as-extruded Al–Si–Mg alloys with different Si content are investigated by tensile test, microstructure observation. High density of Si particles in the Al alloys can induce dynamic recrystallization during hot extrusion and it becomes more matured with an increase in the density of Si particles. The tensile strength of as-cast and as-extruded alloys can be improved with the increase of Si content and hot extrusion make the elongation of alloys increase dramatically. Considerable grain refining effect caused by recrystallization occurred during hot extrusion of S2 (equivalently commercial A356 alloy) and S3 (near eutectic alloy) alloys plays an important role in the improvement of elongation. A good combination of strength and elongation for the as-extruded S3 alloy indicates that near eutectic Al–Si alloys can be hot-extruded to produce aluminum profiles with high performance.  相似文献   

20.
Hypereutectic Al-Si-Cu coatings were prepared by supersonic atmospheric plasma spraying to enhance the surface performance of lightweight alloys.To find out optimum process conditions and achieve desirable coatings,this work focuses on the influence of three important parameters (in-flight par-ticle temperature,impact velocity,and substrate temperature) on the collected splats morphology,coatings microstructure and microhardness.Results show that appropriate combinations of temper-ature and velocity of in-flight particles cannot only completely melt hypereutectic Al-Si-Cu particles,especially the primary Si phase,but also provide the particles with sufficient kinetic energy.Thus,the optimized coating consists of 98.6 % of fully-melted region with nanosized coupled eutectic and 0.9 %of porosity.Increasing the substrate deposition temperature promotes the transition from inhomoge-neous banded microstructure to homogeneous equiaxed microstructure with a lower porosity level.The observations are further interpreted by a newly developed phase-change heat transfer model on quan-titatively revealing the solidification and remelting behaviors of several splats deposited on substrate.Besides,phase evolutions including the formation of supersaturated α-Al matrix solid solution,growth of Si and Al2Cu phases at different process conditions are elaborated.An ideal microstructure (low frac-tions of unmelted/partially-melted regions and defects) together with solid solution,grain refinement,and second phase strengthening effects contributes to the enhanced microhardness of coating.This inte-grated study not only provides a framework for optimizing Al-Si based coatings via thermal spraying but also gives valuable insights into the formation mechanisms of this class of coating materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号