共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
硬段阻燃改性水性聚氨酯的合成与性能 总被引:4,自引:1,他引:4
以二溴新戊二醇(DBNPG)为扩链剂,用硬段改性的方式将阻燃元素引入到水性聚氨酯中,合成出一系列不同改性程度的阻燃水性聚氨酯。用傅立叶红外光谱、核磁碳谱表征了合成产物;并用氧指数仪、TG热重分析仪、DSC差热分析仪对其进行研究。结果表明,15%(质量百分含量)DBNPG改性的水性聚氨酯氧指数已达29.6%;与未改性水性聚氨酯相比,其热稳定性提高;相分离程度随改性程度不同而规律性变化。 相似文献
4.
水性聚氨酯的硬段结晶与粘接性能 总被引:2,自引:0,他引:2
将HDI与IPDI按照不同的摩尔比混合后与PTMG-2000、1,4-BG、DMPA反应,制备了具有不同硬段规整度的系列水性聚氨酯;利用WXRD、DSC、FT-IR等研究了HDI对水性聚氨酯的硬段结晶性能的影响,分析了硬段结晶度与粘接性能之间的关系。结果表明,随着HDI/IPDI摩尔比的增加,水性聚氨酯分子链上氨基甲酸酯键之间氢键密度提高,硬段结晶性能也随之改善;对铝箔的初粘接强度显著增强,最终粘接强度可达8.5 MPa左右。 相似文献
5.
硬段结构对聚氨酯弹性体相容性及阻尼性能的影响 总被引:8,自引:0,他引:8
合成了一系列含有不同硬段的聚氨酯高聚物,并进行了其动态力学性能和热分析(DSC)测试,结果表明在PPO(Mn=2000)-MDI-BDO体系中,硬段含量不影响Tg。随着硬段合量的增加,tanδ峰值降低并呈线性关系。硬段分布对该聚氨酯体系的相容性及阻尼性能有较大的关系。 相似文献
6.
以聚己二酸乙二醇-丙二醇酯二醇(PEPA)为软段,分别采用4种二胺扩链剂和3种二异氰酸酯为硬段,通过预聚体法合成了一系列不同硬段结构和含量的聚氨酯脲弹性体,并采用红外光谱、热失重分析、差示扫描量热和拉伸测试等手段,研究了硬段类型及含量对聚氨酯脲性能的影响。结果表明,在软段结构一致,硬段含量接近的情况下,兼具柔性和刚性的硬段有助于提升聚氨酯脲的力学性能、热学性能和微相分离程度。几种二胺扩链剂和二异氰酸酯中,由二苯基甲烷二异氰酸酯(MDI)和4,4’-二氨基二苯醚(ODA)构成的硬段性能最佳;在软、硬段结构一致的情况下,硬段含量对聚氨酯脲性能影响明显。随着硬段含量增加,聚氨酯脲的拉伸强度、微相分离程度先增大后减小,5%热失重温度和断裂伸长率逐渐下降。当PEPA/MDI/ODA摩尔比为1∶0.5∶0.5(硬段含量31.7%),聚氨酯脲拉伸强度达51.5 MPa,断裂伸长率为709%,5%热失重温度为282.7℃,性能最佳。 相似文献
7.
可生物降解聚氨酯在医学中的应用 总被引:3,自引:0,他引:3
可生物降解型聚氨酯材料具有良好的生物相容性,机械强度好,易加工等特点,在医学中具有十分广泛的应用.综述了可生物降解型聚氨酯材料在医学上的应用、研究进展,并对聚氨酯的组织相容性、血液相容性及降解性能进行了讨论. 相似文献
8.
张阳周雨琪段文鹏李博许勇孙妮娟 《高分子材料科学与工程》2023,39(4):8-16
硬段结构的研究对指导制备兼顾力学性能与自修复性能的聚氨酯弹性体具有重要的意义。文中分别以4,4’-二苯基甲烷二异氰酸酯(MDI)、4,4’-二环己基甲烷二异氰酸酯(HMDI)、甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)及双(2-羟基乙基)二硫醚(HEDS)为硬段部分,聚己内酯二元醇为软段部分,制备了一系列含脂肪族二硫键的自修复聚氨酯,探究了不同异氰酸酯、硬段含量和扩链剂对其力学性能与自修复性能的影响。结果表明,对于异氰酸酯结构来讲,脂环族异氰酸酯制备的自修复聚氨酯具备更好的力学性能与自修复性能;对于脂环族异氰酸酯体系聚氨酯的硬段含量而言,一定范围越高,二硫键与氢键的含量也越高,越有利于材料的力学性能与自修复性能;对于扩链剂结构来讲,脂肪族二硫键主要是促进较高温度条件下的自修复性能,对于室温自修复性能起到的作用有限。 相似文献
9.
不同硬段结构的聚丁二烯聚氨酯弹性体的形态结构研究 总被引:3,自引:0,他引:3
用端羟基聚丁二烯(HTPB,Mn=2160,fn=2.0)作为软段,甲苯二异氰酸酯(TDI),不同结构的二醇扩链剂为硬段,采用溶液二步法合成了不同硬段结构的聚丁二烯聚氨酯弹性体,用TEM、SEM、WAXD、SAXA、DSC对聚合物进行了表征,表明,聚合物具有微相分离的结构特征,不同的溶剂对聚合物的形态有较大的影响。烷基扩链剂的链长对聚合物的结晶无影响,而缩二醇扩链剂的链长对聚合物的结晶有较大的影响 相似文献
10.
选用二苯基甲烷二异氰酸酯(MDI)体系,采用预聚体法合成不同硬段含量的温敏聚氨酯弹性体(CPU).研究了硬段含量对聚氨酯弹性体常温及变温力学性能、热性能、动态性能以及形变温敏性能的影响.结果表明:当硬段含量为62%时,材料的拉伸强度、撕裂强度最高,扯断伸长率最低;当硬段含量为63.5%时,硬度、玻璃化转变温度最高;拉伸强度随温度的升高而降低,扯断伸长率随温度的升高先增加后减小,且在玻璃化转变温度附近达到最大.硬段含量为62%时,CPU的综合性能较为优异,且具有典型的形变温敏性能,随着外界力的变化,聚氨酯弹性体的形变固定率变化并不是特别明显,而形变回复率因此下降. 相似文献
11.
用气相甲醛对聚氨酯弹性体(PU)进行化学改性。通过ATR-FT-IR和DSC研究了PU中硬段晶区化学结构的变化,用DM A和电子式万能材料实验机分别测试了材料的损耗角正切值和力学损耗,结果表明,化学改性后的PU内耗小,拉伸强度较高并且力学稳定性好。说明硬段晶区化学结构对PU性能影响很大。 相似文献
12.
13.
纤维素基可生物降解共混高分子材料的制备和性能 总被引:7,自引:0,他引:7
综述了近年来以纤维素为共混组分制备可生物降解高分子材料的研究进展,重点介绍了纤维素或纤维素衍生物与其它天然高分子(壳聚糖、蛋白质、淀粉等)以及可降解合成高分子(聚乙二醇、聚己内酯、聚乳酸等)共混材料的制备和性能,揭示了纤维素基可生物降解材料在某些应用领域替代石油基材料的潜力. 相似文献
14.
制备了不同硬段含量的聚氨酯(PU)及其PU/有机蒙脱土(OMMT)纳米复合材料。研究结果表明,随着PU分子链中硬段含量的增加,PU分子链的刚性提高,进入硅酸盐片层间的位阻增大,使插层变得困难,从而导致进入该硅酸盐片层间的PU分子链减少。OMMT对PU有增强增韧作用,但随着PU分子链中的硬段含量增加,OMMT的增强效果下降。PU及其PU/OMMT纳米复合材料的热稳定性均随着PU分子链中的硬段含量增加而下降。 相似文献
15.
以聚醚多元醇、异氰酸酯、三乙烯二胺、二甲乙醇胺、二月桂酸二丁基锡、1,1-二氯-1-氟代乙烷(HCFC-141B)、水、硬泡硅油、三(2-氯丙基)磷酸酯等为原料,制备了聚氨酯硬质泡沫。实验考察了发泡剂、异氰酸酯、阻燃剂用量对聚氨酯泡沫性能的影响。结果表明,每100 g聚醚中加入1.25 g水、33.54 g HCFC-141B和155.01 g异氰酸酯时,产品的力学性能和尺寸稳定性较好。当阻燃剂用量为22.59 g时,材料的燃烧性能得到改善。实验初步确定了发泡的较优配方,得到了性能较好的聚氨酯硬质泡沫。扫描电镜(SEM)测试表明泡孔呈近似球形、各向同性的闭孔结构,孔径分布较均匀。 相似文献
16.
以3-氨基丙基三乙氧基硅烷(KH550)、丙烯酸羟乙酯(HEA)、2,4-甲苯二异氰酸酯、对甲酚为原料,制备含硅聚氨酯。用红外光谱对反应合成过程进行跟踪测定,发现端-NCO的聚氨酯预聚物和对甲基苯酚的封端反应在无催化剂条件下为二级反应,当加入催化剂三乙胺后该反应在发生初期为一级反应。无催化剂条件下该反应的活化能为46.96 kJ/mol,催化剂加入量为0.1%时反应的活化能为30.28 kJ/mol,催化剂加入量为0.3%时反应的活化能为18.16 kJ/mol,反应的活化能随催化剂加入量的增加而降低。 相似文献
17.
大豆油基聚氨酯预聚体的制备及其性能研究 总被引:3,自引:2,他引:1
可再生的大豆油、TDI为原料,合成出端-NCO的大豆油基聚氨酯PU.对聚氨酯中的-NCO含量进行了测定.采用FT-IR对材料进行了定性分析,对聚氨酯的色泽、粘度、容纳度等性能进行了测试.结果表明:大豆油基聚氨酯预聚体反应中NCO与OH的物质的量比为1∶1时,保温时间40h,反应温度70℃反应最完全.在-NCO含量为2.0%~2.5%时,各项性能最适合在印刷油墨连接料中应用. 相似文献
18.
氮化钛硬质薄膜的制备方法 总被引:3,自引:0,他引:3
随着新工艺和新技术的不断出现,涂层方法越来越多,膜的种类也层出不穷.氮化钛薄膜因具有许多优良的性能而得到了广泛的应用.介绍了几种制备氮化钛硬质薄膜的新方法、形成机理以及其优缺点,并展望了今后的涂层方法的发展. 相似文献
19.
以异氟尔酮二异氰酸酯(IPDI)、聚氧乙烯长链烷基胺(PAE)等为主要原料,合成了一系列兼具阳离子特性和非离子特性的新型聚氨酯高分子表面活性剂;并对产物进行了红外分析,研究了其侧链烷基碳数、环氧乙烷加合数及外加电解质对表面张力、临界胶束浓度的影响。实验结果表明,当PAE侧链烷基为C_(18),环氧乙烷加合数目为5时,其聚氨酯高分子表面活性剂综合性能优异,溶液的临界胶束浓度为39.600 mg/L,水溶液的表面张力最低可达33.131 m N/m。 相似文献