首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of long-term thermal ageing on the microstructure of AlSl type 316 stainless steel are described. The microstructure of the aged steel is related to the reported embrittlement of the steel. The precipitation found is complex and the embrittlement appears to result, in part, from specimen preparation techniques interacting with the microstructure. The dominant creep deformation mechanism under service conditions appears to be diffusion creep.  相似文献   

2.
This work presents a systematic investigation of the influence of time and temperature in the sensitization of stainless steel AISI 304L, AISI 316L, AISI 321 and AISI 347 pipes used in petroleum refining plants. The sensitization was assessed by Scanning Electron Microscopy (SEM) according to ASTM A-262 and by the Double Loop Electrochemical Potentiokinetic Reactivation test (DLEPR). The results showed that all steels did not present sensitization at operating temperature (380°C) in the desulfurizers process, but the temperature of 500°C was critical to the appearing of sensitization for the both low carbon stainless steels and AISI 321 SS, while for the AISI 347 the critical temperature was 550°C. The stabilized steels confirmed to be more resistant to sensitization than the low carbon stainless steels, and niobium showed to be more efficient stabilizing agent than titanium.  相似文献   

3.
The effects of hydrogen and stress (strain) on the phase transitions of a variety of stainless steels (316, 321, 347) were investigated. Hydrogen was introduced by severe cathodic charging at room temperature. X-ray diffraction was employed to reveal the transformations occurring in thin surface layers. After charging expanded ∈ phase is always present,α′ martensite content increases during ageing and the final content depends on the stability of the austenite. The broadening of diffraction peaks of austenite after cathodic charging is caused by nonuniform distribution of hydrogen. The state of hydrogen distribution in the steel and the relationship between internal stresses, surface cracking and phase transition is discussed.  相似文献   

4.
Over the years, the author has had experience on various programs and vehicle platforms in which martensitic precipitation age-hardening, corrosion-resistant stainless steels such as Custom 455 have demonstrated hydrogen embrittlement resistance. Custom 455 is a double vacuum-melted, martensitic precipitation age-hardening stainless steel, which is reported to be susceptible to hydrogen embrittlement. This paper proposes a plausible rationale for the resistance to hydrogen embrittlement of this type of stainless steel.  相似文献   

5.
The present paper shows several important phenomena obtained by investigations of the effect of hydrogen on fatigue crack growth behaviour, including the measurement of the hydrogen content in various materials such as low-carbon, Cr-Mo and stainless steels. Particularly important phenomena are the localization of fatigue slip bands, strain-induced martensite in Types 304, 316 and even 316L, and also strong frequency effects on fatigue crack growth rates. For example, with a decrease in frequency of fatigue loading down to the level of 0.2 Hz, the fatigue crack growth rate of a Cr-Mo steel is accelerated by 10-30 times. The same phenomenon also occurs even in austenitic stainless steels at the frequency of the level of 0.001 Hz. Striation morphology is also influenced by hydrogen. It has been revealed by re-analysing the results of the authors’ separately published reports that this basic hydrogen embrittlement mechanism is essentially the same throughout all the materials, i.e. low-carbon, Cr-Mo and stainless steels. Thus, the coupled effects of hydrogen content, hydrogen diffusion coefficient (for BCC or FCC), load frequency, localization of fatigue slip bands and strain-induced martensite must be always considered in fatigue test and analysis of hydrogen embrittlement.  相似文献   

6.
Hydrogen embrittlement of 304L and 316L types austenitic stainless steels has been studied by charging thin tensile specimens with hydrogen through cathodic polarization. Throughout this study we have compared solution-annealed samples, having various prior austenite grain size, with samples given the additional sensitization treatment. The results of the tensile tests while undergoing cathodic charging show that the additional sensitization treatment and coarse-grained samples together, lower the mechanical properties in both 304L and 316L types, and the sensitized steel is more susceptible to hydrogen-assisted cracking. However, the room-temperature yield and ultimate strengths, and the elongation of type 316L, were much less affected depending on the heat treatment and prior austenitic grain size. The fracture surfaces of the specimens tested while cathodically charged show considerable differences between the annealed and the sensitized specimens. The sensitized coarse-grained specimens were predominantly intergranular in both 304L and 316L types, while the annealed 316L type specimens fracture shows massive regions of microvoid coalescence producing ductile rupture and the annealed 304L type specimens fracture were primarily transgranular and cleavage-like. Sensitization seems both to facilitate the penetration of hydrogen along the grain boundaries into the steel and to introduce susceptibility to fracture along grain boundaries while refined grain size improves resistance regardless of the failure mode.  相似文献   

7.
Based on the electrochemical permeation technique and the patent by Du, an intelligent electrochemical measurement system for determination of the hydrogen distribution in the wall of hydrogenation reactor has been developed and tested. lt consists of a PC computer, a single chip unit, an I/V converter and an electrochemical hydrogen probe. The construction of the electrochemical hydrogen probe is described and the features of the measured system are given.The diffusion coefficient of 2.25Cr1Mo steel determined with present system was in good agreement with the value in the literature. Experimental results of hydrogen concentration in a wall of hydrogen charged testing autoclave made of AlSl 321 stainless steel are presented. The present system can intelligently display hydrogen amount-of-substance concentration and mass fraction concentration, hydrogen concentration distribution curves in steels, permeation current density curve. An intelligent detection technique can be provided for predicting the susceptibility to hydrogen-induced cracks owing to hydrogen permeation in the wall of hydrogenation reactor in the field.  相似文献   

8.
Stainless steel coatings provide an alternative to protect steel surfaces against corrosive attack. The 316 L stainless steel coatings have been conventionally produced by different spraying processes for such applications. Because the nitrogen alloyed stainless steels exhibit not only superior mechanical properties, but also better corrosion behaviour than conventional stainless steels, in this study the coatings of a nitrogen alloyed austenitic steel were produced using a high velocity oxy-fuel (HVOF) spraying process and an atmospheric plasma spraying (APS) process. Due to much stronger deformation strengthening, the coatings deposited by the HVOF spraying process presented a much higher microhardness than the coatings deposited by the APS process. Moreover, the coatings deposited by the HVOF spraying process were also more corrosion resistant than the coatings deposited by the APS process, because the oxidation of the powder material during HVOF spraying was much lower than that during APS. Compared with the coatings of the conventional stainless steel 316 L, the nitrogen alloyed steel coating deposited by the HVOF spraying process showed a much better corrosion performance.  相似文献   

9.
采用化学浸泡腐蚀试验及微观组织和化学成分分析研究了5种铸造双相不锈钢在6%Fe Cl3溶液中的点腐蚀行为,并与316L奥氏体不锈钢进行了对比。结果表明,铸造双相不锈钢的抗点腐蚀性能均优于316L的,腐蚀速率和点腐蚀深度均小于316L奥氏体不锈钢的;双相不锈钢主要耐点蚀能力合金元素在奥氏体和铁素体相内分布不均匀,铬、钼更多地分配于铁素体相内,而镍、氮则更多地分配于奥氏体相内,铁素体相的耐点蚀指数PRE(Cr%+3.3Mo%+16N%)大于奥氏体相;双相不锈钢的耐点腐蚀性能与化学成分有关,随着PRE的增加,双相不锈钢的耐点腐蚀性能提高,铜元素在铁素体内析出的富铜相导致点蚀优先在铁素体内发生和发展。  相似文献   

10.
The structure and magnetic properties of some 15 austenitic stainless steels were examined after cyclic cooling treatments and low temperature deformation. Magnetic measurements at room temperature, 77 K, and 4.2 K and subsequent metallographic examination suggest that many of the AISI 300 stainless steels such as 301, 302, 303, 304, 304L, 305, 316L, 321, and 347 must be considered potentially unstable with respect to the formation of the ferromagnetic α′ martensite phase on repeated cooling to low temperatures. This structural instability was increased significantly after a sensitizing treatment in the weldable steels 304L, 321, and 347 leading to the formation of up to 11.2% a′ martensite, part of which formed isothermally. Low temperature deformation is even more potent in promoting the transformation, at least 50% α′ martensite being induced by deformation at 4.2 K in the otherwise stable alloys such as 309 and the 0.2% N versions of 304L and 316L. The high alloy steels 310 and Kromarc 55 remain fully a austenitic even after deformation to rupture at 4.2 K. The temperature dependence of the magnetic susceptibility of the latter alloys and Incoloy 800 indicates that their low temperature structural stability is associated with magnetic transitions which occur within the austenite phase.  相似文献   

11.
Four commercially established ferritic-austenitic stainless steel grades have been investigated with respect to σ-phase embrittlement by exposure in the temperature interval 700–900 °C. The results illustrate the fact that this type of steels is rather susceptible to such an embrittlement, and this has to be considered when selecting steel grades for different applications. It is also shown that an increased austenite content in fact promotes σ-phase formation. Molybdenum as alloying element is found to favour σ-phase much stronger than chromium (4–5 times counted per wt%), hence enlarging the critical temperature range considerably towards higher temperature. Further, a simple “σ-equivalent” has been developed by which semiquantitative comparisons of the susceptibility to σ-phase embrittlement might be made between different steel grades, based on their alloy composition.  相似文献   

12.
Hydrogen embrittlement of annealed, 20 and 40% cold worked 2205 duplex stainless steels has been evaluated using electrochemical permeation measurement, hydrogen microprint technique and tensile test in this study. Due to hydrogen transport in 2205 duplex stainless steel is mainly lattice diffusion in ferritic phase, more hydrogen distribution, higher permeation rate and effective diffusion in ferritic phase were detected. Hydrogen trapping and mechanical property effects were studied for cold worked specimens. Fractographic investigation revealed that hydrogen absorption promoted transgranular fracture in cold worked specimens. These results exhibits that the cold worked duplex stainless steels are more susceptible to hydrogen embrittlement.  相似文献   

13.
The effect of hydrogen on the fatigue properties of alloys which are used in fuel cell (FC) systems has been investigated. In a typical FC system, various alloys are used in hydrogen environments and are subjected to cyclic loading due to pressurization, mechanical vibrations, etc. The materials investigated were three austenitic stainless steels (SUS304, SUS316 and SUS316L), one ferritic stainless steel (SUS405), one martensitic stainless steel (0.7C-13Cr), a Cr-Mo martensitic steel (SCM435) and two annealed medium-carbon steels (0.47 and 0.45%C). In order to simulate the pick-up of hydrogen in service, the specimens were charged with hydrogen. The fatigue crack growth behaviour of charged specimens of SUS304, SUS316, SUS316L and SUS405 was compared with that of specimens which had not been hydrogen-charged. The comparison showed that there was a degradation in fatigue crack growth resistance due to hydrogen in the case of SUS304 and SUS316 austenitic stainless steels. However, SUS316L and SUS405 showed little degradation due to hydrogen. A marked increase in the amount of martensitic transformation occurred in the hydrogen-charged SUS304 specimens compared to specimens without hydrogen charge. In case of SUS316L, little martensitic transformation occurred in either specimens with and without hydrogen charge. The results of S-N testing showed that in the case of the 0.7C–13Cr stainless steel and the Cr–Mo steel a marked decrease in fatigue resistance due to hydrogen occurred. In the case of the medium carbon steels hydrogen did not cause a reduction in fatigue behaviour. Examination of the slip band characteristics of a number of the alloys showed that slip was more localized in the case of hydrogen-charged specimens. Thus, it is presumed that a synergetic effect of hydrogen and martensitic structure enhances degradation of fatigue crack resistance.  相似文献   

14.
Bacterial contamination is a major concern in many areas. In this study, silver was added to type 316 stainless steels in order to obtain an expected bacteria inhibiting property to reduce the occurrence of bacterial contamination. Silver-bearing 316 stainless steels were prepared by vacuum melting techniques. The microstructure of these 316 stainless steels was examined, and the influences of silver additions to 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance were investigated. This study suggested that silver-bearing 316 stainless steels could be used in areas where hygiene is a major requirement. The possible mechanisms of silver dissolution from the surfaces of silver-bearing 316 stainless steels were also discussed in this report.  相似文献   

15.
Precipitation and embrittlement behaviour of nickel containing Superferrites During the last years high chromium ferritic stainless steels socalled Superferrites have become of general interest since the mean disadvantages of these steel grades, namely cold brittleness and susceptibility to intergranular corrosion, can be avoided by means of new melting techniques. This group of steels show remarkable strength properties and excellent corrosion behaviour especially in chloride containing solutions. Because of the high content of alloying elements the ferritic solid solution is supersaturated, so that precipitation and embrittlement can occur. From 950° to 550 °C the brittle Chi- and/or Sigmaphase can be precipitated, at temperatures below 550 °C the material can fail by the socalled 475°-embrittlement. Additions of nickel and stabilising by titanium enhance the precipitation process well as the 475°-embrittlement, while a columbium stabilisation of the present carbon and nitrogen contents up to 150 ppm shows no influence. Within the investigated alloying range with 20 to 28% Cr, up to 5% Mo and up to 4% Ni the columbium stabilised steel with 28% Cr, 2% Mo and 4% Ni results as the optimal combination referring to its technological properties as well as to its precipitation and embrittlement behaviour.  相似文献   

16.
The type AISI 316 stainless steel, in addition to the principal alloying elements chromium and nickel, contains 2.5–3.5% of molybdenum. This element is added to improve the mechanical properties and the pitting resistance of austenitic alloys. Concerning the Stress Corrosion Cracking (SCC) resistance of austenitic stainless steels, molybdenum additions to alloys have a variable effect: the effect is detrimental for small additions of Mo, and it is beneficial for the alloy containing more than 4% Mo. Thus the Mo concentration on passive film plays an important role on the SCC resistance of steels. On the other hand, in a previous investigation, it was shown that the composition of passive films formed on the stressed 302 alloy depended on the compressive or tensile nature of stresses. Consequently, the aim of the present work is to study the composition of passive films formed on 316 steel and the migration of molybdenum in a stress field. Thus, Auger electron spectroscopy spectra were recorded to determine the chemical composition of the passive films formed on both sides of the type AISI 316 stainless steel U-bend samples. The results obtained show that the behaviour of chromium and oxygen in passive films formed on 316 steel in the stress field was nearly similar to that formed on 302 steel. Concerning the molybdenum diffusion outwards the passive film formed on the 316 steel was reduced by either the tensile or compressive stress field.  相似文献   

17.
It is well known that the addition of nitrogen to steels and stainless steels enhances the passivity and localized corrosion resistance, in addition to improving the mechanical properties. Selective alloying of surfaces of steels and stainless steels with nitrogen could also enhance the corrosion resistance and improve the mechanical properties without affecting the bulk properties. Techniques like ion implantation, laser alloying, nitriding, etc. can be effectively used to introduce very high levels of nitrogen. In addition, these techniques can also produce modified surfaces with novel microstructures to further improve the properties. The surface alloying methods also provide an opportunity to selectively nitrogenate the surface of finished components in order to obtain better properties. The review highlights the techniques, modifications and the properties obtained further.  相似文献   

18.
Abstract

The microstructural changes, precipitation behaviour, and mechanical properties of typical austenitic stainless steels (304 H, 316 H, 321 H, 347 H, and Tempaloy A–1) have been examined after long-term aging. The steels were aged statically in the temperature range 600–800°C for up to 50000 h. The microstructural changes were observed by optical and transmission electron microscopy, and the extracted residue was identified using X-ray analysis. Time–temperature precipitation diagrams were made for each steel. The amount of σ-phase was measured in samples aged at 700°C. The hardness and impact-value changes, and the tensile properties of aged samples were measured.

MST/358  相似文献   

19.
Abstract

The tensile behaviour of solution annealed type 304L, solution annealed type 304, and solution annealed and sensitised type 304 stainless steels was investigated in hydrogen and helium under a pressure of 1·1 MPa over the temperature range 300–80 K at strain rates ranging from 4·2×10-5 to 4·2×10-2 s-1. For 304L steel, hydrogen environment embrittlement (HEE) increased with decreasing strain rate. For 304L and 304 steels, HEE increased with decreasing temperature, reached a maximum, and then decreased with further decrease in temperature: the decrease was particularly rapid near the minimum temperature for HEE. Sensitisation enhanced the HEE of 304 steel. Above the maximum HEE temperature, the HEE behaviour was similar to the hydrogen embrittlement behaviour of materials in previous studies, but near the minimum temperature for HEE it was different. Three types of hydrogen induced brittle fracture were observed as a result of HEE: transgranular fracture along strain induced martensite laths and twin boundary fracture on the fracture surfaces of solution annealed 304L and 304 steels, and grain boundary fracture on the sensitised 304 steel. It was found that from room temperature to the maximum HEE temperature, the HEE of the materials depended on the transformation of strain induced martensite and below the maximum HEE temperature it depended on the diffusion of hydrogen.  相似文献   

20.
Metallic biomaterials—such as 316L stainless steel and cobalt-based alloys—have been used as biomaterials mainly because of their excellent mechanical and corrosion properties. However, the release of nickel trace elements—which cause toxicity—has prompted the development of nitrogen-containing nickel-free austenitic stainless steels. This paper reviews their development, traces the history of 316L stainless steel, and the improvement of properties by nitrogen addition. These steels are now available for production of implant devices such as bone plates and screws. Such production requires special techniques with nitrogen absorption treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号