首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver, palladium, and their alloys are frequently used as electrode materials for BaTiO3 (BT) based dielectrics. However, the electrodes and dielectrics usually are cofired at high temperatures, and silver and palladium can dissolve into the BT during cofiring. In the present study, the solubility of silver and palladium into BT after cofiring was determined. Three measurement techniques were used to determine solubility: chemical analysis, structural analysis, and dielectric analysis. The solubility of the silver in the BT was low, 450 ppm, after cofiring at 1290°C for 2 h in air. The diffusion distance of the silver ions into the BT was >5 μm. The solubility of the palladium in the BT was even lower, 50 ppm at 1290°C, and the diffusion distance was ∼1 μm. The solubility of both the silver and the palladium in the BT decreased as the oxygen partial pressure of the sintering atmosphere decreased. These results demonstrated that both silver and palladium solutes act as acceptors for BT.  相似文献   

2.
Silver and Ag-Pd alloy are cofired with BaTiO3-based dielectrics during the manufacturing of capacitors. The diffusion of silver into BaTiO3 during sintering is very slow. However, the vapor pressure of silver is high at temperatures greater than the melting point of silver (960°C). The effect of the evaporation of silver during the sintering with BaTiO3 at 1200°, 1250°, and 1290°C is investigated in the present study. The silver vapor can transport through the pore channel of the dielectrics to a distance of a few hundred micrometers. The melting point of Ag-Pd alloy is higher than that of silver; therefore, the transportation of silver vapor from Ag-Pd alloy is hardly observed at temperatures >1200°C.  相似文献   

3.
以氰氨银(Ag2NCN)、活性艳红X-3B和罗丹明B为目标降解物,考察钯纳米粒子负载对Ag2NCN的光催化性能的影响。结果表明,钯纳米粒子负载可显著增强Ag2NCN的光催化活性,最佳负载量为0.6%。  相似文献   

4.
为了提高镀硬金导电环的耐磨性,在黄铜基材上电镀铜/钯/硬金、镍/钯/硬金和银/钯/硬金三种组合镀层,通过工艺实验,组合镀层的外观、厚度、结合力、硬度、接触电阻及表面微观形貌等性能测试,以及装配后耐磨性能考核试验,发现银/钯/硬金组合镀层耐磨性最好。结果表明,该镀层耐磨可达100万次,能够满足产品抗磨性要求。  相似文献   

5.
We have investigated mixed electronic-ionic conduction in 0.5[ x Ag2O·(1 − x )V2O5]–0.5TeO2 glasses, where the Ag2O amount varies over a range of 5–40 mol%. The glass samples have been prepared by quenching the melt. The ac conductivity has been measured at frequencies from 10 Hz to 100 kHz and temperatures of 300–425 K. The data indicate that the conduction mechanism changed from being predominantly electronic to ionic for Ag2O contents of >27.5 mol%. This transition is due to the change in glass structure, which affects both electronic- and ionic-transport properties. The electronic dc conductivity results have been analyzed in terms of a small polaron-hopping model.  相似文献   

6.
Interfacial reaction kinetics between Ag and ceramic-filled glass (CFG) substrate, containing borosilicate glass, high-silica glass, and alumina, has been investigated at 850°–925°C in different atmospheres. No chemical reaction at the interface of Ag/CFG is found when firing takes place in N2 or N2+ 1% H2. Fired in air, however, an interfacial reaction zone is formed at the interface of Ag/CFG with Ag+ ion diffusing from silver and Al3+ ion dissolving from CFG, and both ions are always coupled together in the reaction zone. Microstructural and chemical analyses show that the reaction zone consists of two distinct layers; one is homogeneous, and the other, heterogeneous. The homogeneous layer, which is adjacent to Ag, is uniform in microstructure with a composition rich in Ag+ and Al3+. The heterogeneous layer is not uniform in microstructure with Si-rich and Ag–Al-rich phases. The reaction zone moves toward CFG with time, forming a heterogeneous layer first and then converting into a homogenous layer when diffusion of Ag+ ion into the CFG becomes significant. The growth kinetics for the homogeneous layer follows a linear rate equation, whereas the heterogeneous layer, a parabolic rate equation. Activation analyses suggest that the formation of the homogeneous layer is controlled by the combination of breakage and formation of M–O bonds, but the heterogeneous layer, by the diffusion of Ag+ ion in the BSG.  相似文献   

7.
This work examines the effects of Ag on stoichiometric and nonstoichiometric BaTiO3 in terms of the unit cell dimensions, the polycrystalline microstructure, and the dielectric properties. Stoichiometric BaTiO3 and compositions with 0.5 mol% TiO2 excess and 0.5 mol% BaO excess were prepared via solid-state synthesis with varying amounts of Ag up to 0.3 mol%. Experimental results indicate that stoichiometry plays a significant role in the solubility of Ag and its effects on the physical properties. Overall, the solubility of Ag was negligible in stoichiometric BaTiO3. However, compositions with excess TiO2 stabilized the solubility of Ag as evidenced from changes in the unit cell dimensions and dielectric properties. Based on these data, it is proposed that Ag occupies the A-site in the perovskite structure with an upper limit of Ag solubility of 0.06 mol% Ag in BaTiO3 with 0.5 mol% excess TiO2. Dielectric measurements showed that Ag concentrations approaching 0.3 mol% gave rise to an increase in the space charge effect, especially at temperatures above T C. In both nonstoichiometric compositions, the presence of a liquid Ag phase during thermal processing was found to affect microstructural development and sintering.  相似文献   

8.
Constrained Sintering of Silver Circuit Paste   总被引:1,自引:0,他引:1  
Densification kinetics and stress development during constrained sintering of a silver film on a rigid silicon substrate have been studied. Compared with free sintering, the sintering of constrained silver film exhibits a much lower densification and slower densification kinetics. The densification-controlled mechanism changes from fast grain-boundary diffusion kinetics for free sintering to slow lattice diffusion kinetics for constrained sintering. The in-plane tensile stress developed during constrained sintering of silver film, measured using a noncontact laser-scanning optical system, increases rapidly to a maximum level of 1.0–1.5 MPa initially, gradually decreases, and then becomes constant at 0.8–1.0 MPa. The maximum stress observed increases with increasing sintering temperature as a result of the faster densification rate. It is believed that the retardation of densification kinetics of constrained silver film is caused by a change in densification mechanism and the existence of in-plane tensile stress.  相似文献   

9.
The dielectric properties of Na0.5Bi0.5TiO3 (NBT) -based composites incorporating silver particles prepared by sintering at a low temperature of ∼900°C are reported. The dielectric constant increases with the amount of metal silver particles in the measured frequency range (150 Hz to 1 MHz), and could be enhanced up to ∼20 times higher than that of pure NBT ceramics, which was ascribed to the effective electric fields developed between the dispersed particles in the matrix and the percolation effect. Further investigation revealed that the dielectric constant of the composites has weak frequency and temperature dependence (−50°C to +50°C).  相似文献   

10.
Voronoi tessellation was applied to quantify the microstructural homogeneity of palladium particles in random Pd/cubic yttria-stabilized zirconia (YSZ) composites with the Pd concentration ranging from 0 to 30 vol%. Room-temperature impedance measurements were used to determine the capacitance of the composites. A fourfold enhancement in capacity near the percolation threshold of Pd was obtained. The percolation threshold was estimated at ∼30 vol% Pd using the normalized percolation theory (NPT). Data obtained from Voronoi diagrams resulted in a quantitative measure for the homogeneity of the dual-phase composite. The homogeneity was found to decrease with increasing Pd concentration in the composites. Near the theoretical value of the percolation threshold, the Pd phase appeared to be distributed too inhomogeneously for preparing insulating composites. No large increase in capacity as predicted by NPT could therefore be experimentally verified.  相似文献   

11.
Series of silver nanoparticles (NPs) embedded CsPbBr3 quantum dots (QDs) glass was synthesized via the melt-quench method. Ag NPs and CsPbBr3 QDs coexist in the TEM image of the Ag-doped glass sample. Photoluminescence (PL) spectra show that the 0.1 molar ratio Ag2O-doped sample had a PL intensity 2.37 times than the undoped sample. This increase is generated by localized surface plasmon resonance coupling between the Ag NPs and CsPbBr3 QDs. Excessive Ag doping weakens the PL intensity due to spectral self-absorption of the Ag NP surface plasmon resonance (SPR). Self-adsorption of SPR is detrimental to luminescence properties because it increases the amount of photogenerated charge carriers, which proceed through nonradiative relaxation pathways. In addition, stability results of Ag NP-doped-CsPbBr3 QD glass show that they have excellent stability. This study on Ag NP-doped-CsPbBr3 QD glass provides a new idea for the future development of perovskite QD optoelectronic devices.  相似文献   

12.
The effect of silver doping on the DC-voltage resistance failure of lead-based relaxor ferroelectrics was investigated via temperature-humidity-bias (THB) testing, scanning electron microscopy, X-ray diffraction spectroscopy, and electrical measurements. The failure rate of silver-doped specimens was found to increase significantly with the doping level during the THB test. However, some degraded specimens can partially recover their electrical properties after a few days of storing in natural conditions. X-ray diffraction analysis showed that silver could be incorporated into the perovskite lattice in the range of silver contents studied. The presence of an inner-bias field in the degraded ceramics was first demonstrated through hysteresis property measurement. Based on these results, it was inferred that the accumulation of oxygen vacancies under DC-voltage should be responsible for the inner-bias field, which consequently resulted in the increase of electronic defects in the ceramics.  相似文献   

13.
The chemical compatibility of silver electrodes and low-firing ceramics has been considered, in terms of the existence of a tie line between silver (and/or Ag2O) and the binary oxide compound in the corresponding ternary phase diagram. The probability of the existence of the tie line is related to the conditions in the subordinated silver-based isothermal binary systems. Greater probabilities have been calculated for the systems with fewer silver-based binary compounds. Based on the concepts that have been developed, several silver-based isothermal binary systems have been investigated to identify the oxides suitable for the development of low-temperature cofired ceramics. The developed concept has been tested by investigating the phase relations in the Bi2O3–Nb2O5 and Bi2O3–V2O5 ternary systems with silver. X-ray and microstructural investigations of bismuth niobates and bismuth vanadates reveal that, as a result of the inertness of Bi2O3 and the reactivity of Nb2O5 and V2O5 toward silver, compounds that are rich in niobium or vanadium react with silver to form ternary Nb/V-Bi-Ag oxide compounds, whereas for compounds that are rich in bismuth, tie lines to silver and Ag2O do exist.  相似文献   

14.
Zinc oxide (ZnO) powders were synthesized by the modified glycine-nitrate process (MGNP) with various oxidants and fuels. Single-phase ZnO powders were easily obtained regardless of oxidants and fuels. The particle size and shape of ZnO powders were dependent on the types of fuels. The ZnO powder synthesized using Zn(OH)2 and glycine as an oxidant and a fuel, at a fuel/oxidant ratio of 0.8, showed the best powder characteristics, such as an average grain size of 30 nm and the specific surface area of 120 m2/g. The removal of silver ions from the waste-development solution was tried to confirm photocatalytic activities of the synthesized ZnO powder. The silver ions were completely removed within 15 min. This silver recovery rate is three times higher than that of commercial state-of-the-art TiO2. The photoluminescence (PL) measurement also showed the PL intensity at ultraviolet (UV) of the synthesized ZnO powder is almost three times higher than that of commercial state-of-the-art TiO2. The synthesized ZnO nanopowder absorbed more UV than any other powders, including commercial state-of-the-art TiO2 and ZnO powders. This means the high UV absorption efficiency leads to the generation of more electrons that are involved in the reduction of silver ions.  相似文献   

15.
Different amounts of silver (0.5–10 wt%) have been mixed with EIA X7R-type ceramic powders based on barium titanate. The XRD analysis indicated that no phases other than BaTiO3 and silver were present in the doped ceramics; it further suggested that no reaction took place between BaTiO3 and silver during calcination and sintering. SEM observation showed that the silver particles presented island distribution in the BaTiO3 ceramic matrix. The densification and dielectric properties of the silver-doped ceramics in disk form were investigated. A large amount of silver addition (>1 wt%) was found to improve the sintered density and dielectric properties. The temperature coefficient of capacitors of the ceramics doped with 10 wt% silver still met the X7R characteristics, and the dielectric constant of the ceramics at room temperature was >6000, which is the highest dielectric constant in the BaTiO3-based X7R system.  相似文献   

16.
Effects of Ag addition on sintering of a crystallizable CaO-B2O3-SiO2 glass have been investigated at 700°–900°C in different atmospheres. With Ag content increasing in the range of 1–10 vol%, the softening point, the densification, the onset crystallization temperature, and the total amount of crystalline phase formed of the crystallizable glass are reduced when fired in air. A bloating phenomenon is observed when the crystallizable CaO-B2O3-SiO2 glass doped with 1–10 vol% Ag is fired at 700°–900°C for 1–4 h. Fired in N2 or N2+ 1% H2, however, the above phenomena disappear completely. It is thus believed that the diffusion of Ag into the crystallizable glass, which is caused by the oxidation of Ag in air, is the root cause for the above results observed.  相似文献   

17.
75Cu·25SiC (vol%) compacts were prepared using copper-coated SiC particles and spark plasma sintering (SPS). The preliminary thermal performance of the coated particles was determined using simultaneous DSC-TG-MS measurement. Characterization of compacts using XRD and SEM techniques was conducted to investigate the physical and chemical changes during the SPS operation. It was found that CuO decomposed at 850° and 500°C during conventional heating and SPS, respectively. Cu2O facilitated the densification of Cu/SiC composites. The optimized sintering temperature of Cu/SiC composites using SPS was ∼730°C. The compacts showed improved hardness because of the SiC reinforcement.  相似文献   

18.
The silver diffusion behavior in the low‐temperature cofired ceramic (LTCC) comprising of borosilicate glass and alumina was investigated in this work. Transmission electron microscope (TEM) analysis revealed that silver ions diffused into LTCC materials through the glass phase. The addition of copper oxide in the LTCC materials can suppress the silver diffusion during the sintering process because of the enhanced crystallization of borosilicate glass, which leads to the quick increase in glass viscosity and retards the silver diffusion. Thermal dynamic analysis confirmed that the diffusion coefficient of silver in the copper‐oxide‐modified LTCC materials was largely reduced.  相似文献   

19.
钯配合物催化环己烯氧化合成环己酮的研究进展   总被引:4,自引:1,他引:3  
李华明  刘朋军  叶兴凯  吴越 《化工进展》2001,20(6):25-28,35
综述了钯配合物催化环己烯氧化合成环己酮的研究进展。总结了环己烯氧化合成环己酮的催化体系及其催化活性。着重介绍了PdSO4 /HPA (杂多酸 ) ,Pd (OAc) 2 /BQ (苯醌 ) ,Pd (OAc) 2 /FePc (酞菁铁 ) ,Pd(OAc) 2 /HQ (氢醌 ) /FePc ,Pd (OAc) 2 /HQ /HPA ,Pd (NO3 ) 2 /CuSO4 /HPA等催化体系催化环己烯氧化的活性及其作用机理。讨论了影响环己烯氧化活性的因素  相似文献   

20.
GaN buffer and main layers were grown by the conventional hydride vapor phase epitaxy technique using GaCl3 consecutively. The deposited buffer layers were investigated by atomic force microscopy and X-ray analysis. To examine the behavior of the buffer layers at main layer growth temperature, heat treatment was conducted at 900°C. Based on the results of the buffer layer study, GaN thick films were grown at 1050°C. Optimum deposition conditions of buffer layer from the buffer and main layer studies generally coincided. On the φ scanning pattern, the GaN films grown on (0001) Al2O3 were single-crystalline. Band-edge emission dominated photoluminescence was observed at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号