首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the propagation rate expression and the path prediction. It is found that during the mode transformation process, the crack propagation rate is still controlled by the mode I stress intensity factor; and Paris equation also holds for the relationship between and ΔKI . Crack propagation path can be predicted only when both the crack mode transformation rate and propagation rate are available.  相似文献   

2.
Three‐dimensional mixed‐mode crack propagation simulations were performed by means of the dual boundary element method code BEASY and 2 finite element method‐based crack propagation codes: ZENCRACK (ZC) and CRACKTRACER3D (CT3D). The stress intensity factors (SIFs) along the front of an initial semielliptical crack, initiated from the external surface of a shaft, were calculated for 4 different load cases: bending, press fit, shear, and torsion. The methods used for the SIF assessment along the crack front were the J‐integral for BEASY and ZC and the quarter point element stress method for CT3D. Subsequently, crack propagation simulations were performed, with the crack growth rate evaluated by using Paris' law, calibrated for the material at stake (American Society for Testing and Materials A469 steel). The kink angles were evaluated by using the minimum strain energy density and maximum tangential stress criteria for BEASY, the maximum energy release rate and maximum tangential stress for ZC, and the maximum principal asymptotic stress for CT3D. The results obtained in terms of SIFs and crack propagation life show very good agreement among the 3 codes. Also, the shape of the propagated crack, which is significantly out‐of‐plane for the shear and torsion loading, matched very well.  相似文献   

3.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the mode transformation process. It is found that with the crack growth, I + III mixed mode changes to Mode I. Crack mode transformation is governed by the Mode III component and the transformation rate is a function of the relative magnitude of the Mode III stress intensity factor. However, even in the process of the crack mode transformation the fatigue crack propagation is controlled by the Mode I deformation.  相似文献   

4.
The mechanism of mixed‐mode fatigue crack propagation was investigated in pure aluminum. Push‐pull fatigue tests were performed using two types of specimens. One was a round bar specimen having a blind hole, one was a plate specimen having a slit. The slit direction cut in the specimen was perpendicular or inclined 45 degrees relative to the centre of the specimen axis. In both cases, cracks propagated by mode I or by the mixed mode combining mode I and shear mode, depending on the testing conditions. In these cases the crack propagation rate was evaluated with a modified effective stress intensity factor range. Crack propagation retardation was observed in some specimens. However, it was found that the crack propagation rate could also be evaluated by the effective stress intensity factor range independent of the crack propagation mode.  相似文献   

5.
The possibility of pure mode III crack growth is analysed on the background of theoretical and experimental results obtained in the last 20 years. Unlike for modes I and II, there is no plausible micromechanistic model explaining a pure mode III crack growth in ductile metals. In order to realize 'plain' mode III fracture surface, we propose the propagation of a series of pure mode II cracks along the crack front. Fractographical observations on crack initiation and propagation in a low alloy steel under cyclic torsion support such a model. The authors have not seen any clear indication of a pure mode III crack growth micromechanism in metals until now.  相似文献   

6.
Mixed mode fatigue crack growth: A literature survey   总被引:13,自引:0,他引:13  
The applications of fracture mechanics have traditionally concentrated on crack growth problems under an opening or mode I mechanism. However, many service failures occur from growth of cracks subjected to mixed mode loadings. This paper reviews the various criteria and parameters proposed in the literature for predictions of mixed mode crack growth directions and rates. The physical basis and limitations for each criterion are briefly reviewed, and the corresponding experimental supports are discussed. Results from experimental studies using different specimen geometries and loading conditions are presented and discussed. The loading conditions discussed consist of crack growth under mode II, mode III, mixed mode I and II, and mixed mode I and III loads. The effects of important variables such as load magnitudes, material strength, initial crack tip condition, mean stress, load non-proportionality, overloads and crack closure on mixed mode crack growth directions and/or rates are also discussed.  相似文献   

7.
Based on the sixth order Reissner plate theory, the generalized displacement functions for a cracked plate are derived by eigenfunction expansion method. The fractal two-level finite element method is employed to obtain the stress (moment and shear) intensity factors for the center cracked plate subjected to out-of-plane bending and twisting loads. The numerical results from the present method are checked with those available in literature. Highly accurate stress intensity factors are predicted for a wide range of thickness to crack length ratio and a full range of PoissonÆs ratio provided that the radius of fractal mesh to thickness ratio is not less than .  相似文献   

8.
An embedded cohesive crack model is proposed for the analysis of the mixed mode fracture of concrete in the framework of the Finite Element Method. Different models, based on the strong discontinuity approach, have been proposed in the last decade to simulate the fracture of concrete and other quasi‐brittle materials. This paper presents a simple embedded crack model based on the cohesive crack approach. The predominant local mode I crack growth of the cohesive materials is utilized and the cohesive softening curve (stress vs. crack opening) is implemented by means of a central force traction vector. The model only requires the elastic constants and the mode I softening curve. The need for a tracking algorithm is avoided using a consistent procedure for the selection of the separated nodes. Numerical simulations of well‐known experiments are presented to show the ability of the proposed model to simulate the mixed mode fracture of concrete.  相似文献   

9.
The influence of the mode II fracture parameters on the mixed mode fracture experimental tests of quasibrittle materials is studied. The study is based on experimental results and numerical analyses. For the numerical study, a procedure for mixed mode fracture of quasibrittle materials is presented. The numerical procedure is based on the cohesive crack approach, and extends it to mixed mode fracture. Four experimental sets of mixed mode fracture were modelled, one from Arrea and Ingraffea and another from a nonproportional loading by the authors, both with bending concrete beams. Two other sets of experimental fracture were modelled, based on double-edge notched testing; in these tests an important mode II is beforehand expected. The numerical results agree quite well with experimental records. The influence of the main parameters for mode II fracture on the mixed mode fracture is studied for the four experimental set of tests and compared with these results. In all them, large changes in the mode II fracture energy hardly modify the numerical results. The tangential and normal stresses along the crack path during the loading proccess are obtained, also with different values of the mode II fracture energy. For the studied experimental tests it is concluded that the crack is initiated under mixed mode but propagated under predominant mode I. This allows a development of mixed mode fracture models, mainly based on standard properties of the material measured by standard methods, avoiding the problems associated with the measurement of mode II fracture parameters, such as mode II fracture energy and cohesion.  相似文献   

10.
The problem on a crack in a bimaterial periodically-layered composite is considered. The single finite length crack parallel to the interfaces is loaded by normal opening tractions but the fracture mode is the mixed one as a result of non–symmetric crack location within the layer. The crack is presented as distributed dislocations with unknown density and the problem is reduced to a system of singular integral equations of the first kind. The coefficients of the system are derived from the application of the Green function for a single dislocation which is obtained in a closed form with the help of the representative cell approach. The dependence of the stress intensity factors K I and K II upon the geometric and elastic mismatch parameters is examined. The numerical study allowed to point out the cases in which the simplified sandwich model can be employed for the analysis. On the other hand, for the case of very thin and stiff non–cracked layers essentially dissimilar behavior of the stress intensity factors was revealed. In particular, we discovered that K II may vanish not only for the symmetric crack position in the midplane of the layer but also in several additional ones. For some limiting cases the solution is seen to coincide with known results.  相似文献   

11.
Three‐dimensional numerical analyses, using the finite element method (FEM), have been adopted to simulate fatigue crack propagation in a hollow cylindrical specimen, under pure axial or combined axial‐torsion loading conditions. Specimens, made of Al alloys B95AT and D16T, have been experimentally tested under pure axial load and combined in‐phase constant amplitude axial and torsional loadings. The stress intensity factors (SIFs) have been calculated, according to the J‐integral approach, along the front of a part through crack, initiated in correspondence of the outer surface of a hollow cylindrical specimen. The crack path is evaluated by using the maximum energy release rate (MERR) criterion, whereas the Paris law is used to calculate crack growth rates. A numerical and experimental comparison of the results is presented, showing a good agreement in terms of crack growth rates and paths.  相似文献   

12.
A new finite element (FE) framework for fatigue crack propagation (FCP) analysis is proposed. This framework combines the simplicity of standard industrial FCP analysis with the generality and accuracy of a full FE analysis and can be implemented on a small computer by combining standard existing computational tools. In this way it constitutes an attractive alternative to existing approaches. The framework is based on linear elastic fracture mechanics and on FE mesh adaptation. Some novel features are introduced in several of its steps in order to make it efficient and at the same time reasonably accurate. Various computational aspects of the scheme are discussed. A few two‐dimensional numerical examples involving FCP in thin sheets under plane‐stress conditions are presented to demonstrate the performance of the framework. Some of the numerical results are compared to those of laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The numerical manifold method is a cover-based method using mathematical covers that are independent of the physical domain. As the unknowns are defined on individual physical covers, the numerical manifold method is very suitable for modeling discontinuities. This paper focuses on modeling complex crack propagation problems containing multiple or branched cracks. The displacement discontinuity across crack surface is modeled by independent cover functions over different physical covers, while additional functions, extracted from the asymptotic near tip field, are incorporated into cover functions of singular physical covers to reflect the stress singularity around the crack tips. In evaluating the element matrices, Gaussian quadrature is used over the sub-triangles of the element, replacing the simplex integration over the whole element. First, the method is validated by evaluating the fracture parameters in two examples involving stationary cracks. The results show good agreement with the reference solutions available. Next, three crack propagation problems involving multiple and branched cracks are simulated. It is found that when the crack growth increment is taken to be 0.5hda≤0.75h, the crack growth paths converge consistently and are satisfactory.  相似文献   

14.
This article introduces a specimen geometry that allows the separation of fracture energy release rates G I and G II in adhesively joined beams made of disparate materials. The analysis is based upon a Green's functions formulation for shear deformable beams and circumvents the need to employ finite element computations. The current method results in a system of non-singular integral equations, that can be discretized and reduced to a system of algebraic equations which may be solved by common numerical techniques. The analysis accounts for the dimensions and properties of the adhesive and provides results for a wide range of G I, G II and their ratio. Those results agree with finite element computational values to within less than 4%.  相似文献   

15.
Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack path depends on the mode‐mixity at the crack tip, face sheet properties and core density.  相似文献   

16.
ABSTRACT The behaviour of fatigue crack propagation of rectangular spheroidal graphite cast iron plates, each consisting of an inclined semi‐elliptical crack, subjected to axial loading was investigated both experimentally and theoretically. The inclined angle of the crack with respect to the axis of loading varied between 0° and 90°. In the present investigation, the growth of the fatigue crack was monitored using the AC potential drop technique, and a series of modification factors, which allow accurate sizing of such defects, is recommended. The rate of fatigue crack propagation db/dN is postulated to be a function of the effective strain energy density factor range, ΔSeff. Subsequently, this concept is applied to predict crack growth due to fatigue loads. The mixed mode crack growth criterion is discussed by comparing the experimental results with those obtained using the maximum stress and minimum strain energy density criteria. The threshold condition for nongrowth of the initial crack is established based on the experimental data.  相似文献   

17.
The mixed mode I‐II fatigue and fracture is briefly reviewed, addressing experimental and numerical modelling aspects, and focusing on planar specimens. One major challenge concerns the determination of equivalent stress intensity factor (Keq) in mixed mode situations. Several approaches were compared through the determination of Keq/KI over a wide range of values of KI/KII or KII/KI. Whereas all different approaches converge to the same value as KI/KII increases, the same does not happen for large KII/KI, where differences between values of Keq persist. In the regions of 0 < KI/KII < 2 and 0 < KII/KI < 2, no stable trend of results can be defined. Experimental fatigue crack growth results are presented for Al alloy AA6082‐T6. Compact tension specimens, modified with holes, and four‐point bending specimens under asymmetrical loading promoting mixed mode situations, were subjected to fatigue crack growth tests, where crack path and crack growth rate were measured. The presentation of the fatigue crack growth data was made using a Paris law based upon Keq. Differences in the Paris law constants were found for the different Keq criteria. Recent developments in numerical techniques, as the implementation of the extended finite element method (XFEM) in finite element software packages allows to determine accurately crack paths in mixed mode fracture. This article highlights concepts for mixed‐mode fatigue and fracture and supporting data, identifying challenges still to be overcome.  相似文献   

18.
Several fracture codes have been developed in recent years to perform analyses of dynamic crack propagation in arbitrary directions. However, general-purpose, commercial finite-element software which have capabilities to do fracture analyses are still limited in their use to stationary cracks and crack propagation along trajectories known a priori . In this paper, we present an automated fracture procedure implemented in the large-scale, nonlinear, explicit, finite-element code DYNA3D which can be used to simulate dynamic crack propagation in arbitrary directions. The model can be used to perform both generation- and application-phase simulations of self-similar as well as non-self-similar dynamic crack propagation in linear elastic structures without user intervention. It is developed based on dynamic fracture mechanics concepts and implemented for three-dimensional solid elements. Energy approach is used in the model to check for crack initiation/propagation. Dynamic energy release rate and stress intensity factors are determined from far-field finite-element field solutions using finite-domain integrals. Fracture toughness is input as a function of crack-tip velocity, and when the criterion for crack growth is satisfied, an element deletion-and-replacement re-meshing procedure is used along with a gradual nodal release technique to update the crack geometry and model the crack propagation. Direction of crack propagation is determined using the maximum circumferential stress criterion. Numerical simulations of experiments involving non-self-similar crack propagation are performed, and results are presented as verification examples.  相似文献   

19.
For mode-I loading, in order to describe the near-tip stress field in a specimen under large scaled yielding, two parameter approaches such as J-T, J-Q and J-A2 theories have been developed and proved well for their validity and limit. In this work elastic-plastic finite element analysis were performed to investigate the effects of mode mixity and T-stress upon near-tip stress distribution for a small-scale-yield model with the modified boundary layer and CTS (Compact Tension-Shear) configuration under large-scale-yield state. As the results, some peculiar characteristics were found as follows; As the mode mixity increases, normal stresses rr and near the crack tip in the small-scale-yield model get significantly affected by the positive T-stress as well as the negative T-stress, while the shear stress r is little affected by T-stress. Also, the near-tip stress distribution of short cracked CTS specimens under the large-scale-yield state agree fairly well with that of the small-scale-yield model with an appropriate positive T-stress. The two parameters approach with J-integral and T-stress seems to be a good tool for describing the near-tip stress field under a mixed mode loading and large-scale-yield state.  相似文献   

20.
Surface fatigue crack propagation is the typical failure mode of engineering structures. In this study, the experiment on surface fatigue crack propagation in 15MnVN steel plate is carried out, and the crack shape and propagation life are obtained. With the concept of ‘equivalent thickness’ brought into the latest three‐dimensional (3D) fracture mechanics theory, one closure model applicable to 3D fatigue crack is put forward. By using the above 3D crack‐closure model, the shape and propagation life of surface fatigue crack in 15MnVN plates are predicted. The simulative results show that the 3D fracture mechanics‐based closure model for 3D fatigue crack is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号