首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Direct machining steel parts at a hardened state, known as hard turning, offers a number of potential benefits over traditional grinding in some applications. In addition, hard turning has several unique process characteristics, e.g., segmented chip formation and microstructural alterations at the machined surfaces, fundamentally different from conventional turning. Hard turning is, therefore, of a great interest to both the manufacturing industry and research community. Development of superhard materials such as polycrystalline cubic boron nitride (known as CBN) has been a key to enabling hard turning technology. A significant pool of CBN tool wear studies has been surveyed, in an attempt to achieve better processing and tooling applications, and discussed from the tool wear pattern and mechanism perspectives. Although various tool wear mechanisms, or a combination of several, coexist and dominate in CBN turning of hardened steels, it has been suggested that abrasion, adhesion (possibly complicated by tribochemical interactions), and diffusion may primarily govern the CBN tool wear in hard turning. Further, wear rate modeling including one approach developed in a recent study, on both crater and flank wear, is discussed as well. In conclusion, a summary of the CBN tool wear survey and the future work are outlined.  相似文献   

2.
Surface Integrity and Machineability in Intermittent Hard Turning   总被引:1,自引:1,他引:0  
Despite the large amount of research on hard turning, there are few results on intermittent hard turning. In this paper, the feasibility of internal intermittent hard turning has been investigated. First, the cutting tools with different cubic boron nitride (CBN) contents were evaluated, based on machineability: tool wear, surface roughness, and cutting forces. In the case of intermittent turning, low CBN content tools had better machineability than high CBN content tools. The depth of the machining damaged layer and the magnitude and distribution of residual stress were evaluated. The experimental results showed that intermittent hard turning can produce surface integrity which is good enough for replacing the grinding process.  相似文献   

3.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

4.
Tool crater wear depth modeling in CBN hard turning   总被引:1,自引:0,他引:1  
Yong Huang  Ty G. Dawson 《Wear》2005,258(9):1455-1461
Hard turning has been receiving increased attention because it offers many possible benefits over grinding in machining hardened steel. The wear of cubic boron nitride (CBN) tools, which are commonly used in hard turning, is an important issue that needs to be better understood. For hard turning to be a viable replacement technology, the high cost of CBN cutting tools and the cost of down-time for tool changing must be minimized. In addition to progressive flank wear, microchipping and tool breakage (which lead to early tool failure) are prone to occur under aggressive machining conditions due to significant crater wear and weakening of the cutting edge. The objective of this study is to model the CBN tool crater wear depth (KT) to guide the design of CBN tool geometry and to optimize cutting parameters in finish hard turning. First, the main wear mechanisms (abrasion, adhesion, and diffusion) in hard turning are discussed and the associated wear volume loss models are developed as functions of cutting temperature, stress, and other process information. Then, the crater wear depth is predicted in terms of tool/work material properties and process information. Finally, the proposed model is experimentally validated in finish turning of hardened 52100 bearing steel using a low CBN content tool. The comparison between model predictions and experimental results shows reasonable agreement, and the results suggest that adhesion is the dominant wear mechanism within the range of conditions that were investigated.  相似文献   

5.
The focus of this paper is the continuous turning of hardened AISI 52100 (~63HRc) using coated and uncoated ceramic Al2O3–TiCN mixed inserts, which are cheaper than cubic boron nitride (CBN) or polycrystalline cubic boron nitride (PCBN). The machinability of hardened steel was evaluated by measurements of tool wear, tool life, and surface finish of the workpiece. Wear mechanisms and patterns of ceramic inserts in hard turning of hardened AISI 52100 are discussed. According to the results obtained, fracture and chipping type damages occur more frequently in uncoated tools, whereas crater wear is the more common type of damage in TiN coated tools. Most important result obtained from the study is that TiN coating and crater wear affect chip flow direction. In uncoated ceramic tool, the crater formation results in decrease of chip up-curl radius. Besides, uncoated cutting tool results in an increase in the temperature at the tool chip interface. This causes a thermal bi-metallic effect between the upper and lower sides of the chip that forces the chip to curl a smaller radius. Chips accumulate in front of the tool and stick to the workpiece depending on the length of the cutting time. This causes the surface quality to deteriorate. TiN coating not only ensures that the cutting tool is tougher, but also ensures that the surface quality is maintained during cutting processes.  相似文献   

6.
G. Poulachon  A. Moisan  I. S. Jawahir 《Wear》2001,250(1-12):576-586
Hard turning is a turning operation performed on high strength alloy steels (45Ra0.1 μm). Extensive research being conducted on hard turning has so far addressed several fundamental questions concerning chip formation mechanisms, tool-wear, surface integrity and geometric accuracy of the machined components. The major consideration for the user of this relatively newer technology is the quality of the parts produced. A notable observation from this research is that flank wear of the cutting tool has a large impact on the quality of the machined parts (surface finish, geometric accuracy and surface integrity). For components with surface, dimensional and geometric requirements (e.g. bearing surfaces), hard turning technology is often not economical compared with grinding because tool-life is limited by the tolerances required (i.e. high flank wear rate).

The aim of this paper is to present the various modes of wear and damage of the polycrystalline cubic boron nitrides (PCBN) cutting tool under different loading conditions, in order to establish a reliable wear modeling. Flank wear has a large impact on the quality of the parts produced and the wear mechanisms have to be understood to improve the performance of the tool material, namely by reducing the flank wear rate. The wear mechanisms depend not only on the chemical composition of the PCBN, and the nature of the binder phase, but also on the hardness value and above all on the microstructure (percentage of martensite, type, size, composition of the hard phases, etc.) of the machining work material. The proposed modeling is in a generalized form of the extended Taylor’s law allowing to prediction of the tool-life as a function of the cutting parameters and of the workpiece hardness. The effects of these factors on tool-wear, tool-life and cutting forces are discussed in the paper.  相似文献   


7.
In precision machining, due to the recent developments in cutting tools, machine tool structural rigidity and improved CNC controllers, hard turning is an emerging process as an alternative to some of the grinding processes by providing reductions in costs and cycle-times. In industrial environments, hard turning is established for geometry features of parts with low to medium requirements on part quality. Better understanding of cutting forces, stresses and temperature fields, temperature gradients created during the machining are very critical for achieving highest quality products and high productivity in feasible cycle times. To enlarge the capability profile of the hard turning process, this paper introduces prediction models of mechanical and thermal loads during turning of 51CrV4 with hardness of 68 HRC by a CBN tool. The shear flow stress, shear and friction angles are determined from the orthogonal cutting tests. Cutting force coefficients are determined from orthogonal to oblique transformations. Cutting forces, temperature field for the chip and tool are predicted and compared with experimental measurements. The experimental temperature measurements are conducted by the advanced hardware device FIRE-1 (Fiberoptic Ratio Pyrometer).  相似文献   

8.
In precision machining, due to the recent developments in cutting tools, machine tool structural rigidity and improved CNC controllers, hard turning is an emerging process as an alternative to some of the grinding processes by providing reductions in costs and cycle-times. In industrial environments, hard turning is established for geometry features of parts with low to medium requirements on part quality. Better understanding of cutting forces, stresses and temperature fields, temperature gradients created during the machining are very critical for achieving highest quality products and high productivity in feasible cycle times. To enlarge the capability profile of the hard turning process, this paper introduces prediction models of mechanical and thermal loads during turning of 51CrV4 with hardness of 68 HRC by a CBN tool. The shear flow stress, shear and friction angles are determined from the orthogonal cutting tests. Cutting force coefficients are determined from orthogonal to oblique transformations. Cutting forces, temperature field for the chip and tool are predicted and compared with experimental measurements. The experimental temperature measurements are conducted by the advanced hardware device FIRE-1 (Fiberoptic Ratio Pyrometer).  相似文献   

9.
Modelling of CBN tool crater wear in finish hard turning   总被引:1,自引:2,他引:1  
The wear of cubic boron nitride (CBN) cutters, commonly used now in the finish turning of hardened parts, is an important issue that needs to be addressed for hard turning to be a viable technology due to the high costs of CBN cutters and the down-time for tool change. Chipping and tool breakage, which lead to early tool failure, are both prone to take place under the effect of crater wear. The objective of this study is to develop a methodology to model the CBN tool crater wear rate to both guide the design of CBN tool geometry and optimise cutting parameters in finish hard turning. First, the wear volume losses due to the main wear mechanisms (abrasion, adhesion, and diffusion) are modelled as functions of cutting temperature, stress, and other process attributes respectively. Then, the crater wear rate is predicted in terms of tool/work material properties and cutting configuration. Finally, the proposed model is experimentally validated in finish turning of hardened 52100 bearing steel using a low CBN content insert. The comparison between the prediction and the measurement shows reasonable agreement and the results suggest that adhesion is the main wear mechanism over the investigated range of cutting conditions .  相似文献   

10.
Hard turning has become an alternative machining process for grinding processes of hardened steels. One challenge during hard turning is the increasing wear during the operation time of the tool and the hereby influenced workpiece surface and subsurface properties. This causes unfavorable changes of the microstructure and residual stress state or rather damages of the subsurface. Important factors are the contact conditions between the tool and the workpiece. The width of flank wear land influences the size of the passive force significantly. This has a direct impact on the subsurface properties of the workpiece. One solution is to modify the contact conditions and thereby the specific mechanical and thermal loads that are applied to the tool as well as to the workpiece. This article presents an experimental approach of modified corner radius geometry of cutting tools for hard turning processes. Hereby, the size and direction of the contact length of the cutting edge are adjusted as well as the load impact during machining. The aim is to reduce the tool wear performance. The results show the potential of the load-specific tool design concerning the tool wear and the workpiece subsurface properties. Furthermore, a new approach for predicting the process forces during hard turning is presented.  相似文献   

11.
Due to technical and economical factors, hard turning is competing successfully with the grinding process in the industries. Many practical applications require components to be hardened in order to improve their wear behavior. Higher productivity and good surface quality are the requirements of the modern industries. However, tool wear is the major problem in hard turning. The tool wear models, used to assess the performance of hard turning process, play an important role in predicting the surface quality. So, in the present work, an attempt has been made to develop an analytical tool wear model for the mixed ceramic inserts during the hard turning of bearing steel incorporating abrasion, adhesion, and diffusion wear mechanisms. The new model developed can reliably be used to assess the wear of the mixed ceramic tools within the domain of the parameters. It has been observed that tool wear is increasing with the increase in cutting speed, feed, and effective rake angle. However, it has been found to be slightly decreasing with the increase in nose radius. The proposed model was validated by conducting experiments. It could be seen that the model was capable of predicting the flank wear using the cutting parameters and tool geometry.  相似文献   

12.
针对磨削加工中套圈精密加工存在的不足,进行精密硬车削加工轴承套圈新工艺的开发,通过加工试验分析了精密硬车加工轴承套圈的表面完整性,探究了基准面平面度、刀具磨损量等工艺参数与加工精度的对应关系。基于精密硬车削套圈试样的表面粗糙度、沟道圆度、显微硬度、热损伤、金相组织、残余应力分布、加工效率等方面的研究,得出了精密硬车削可达到磨削加工精度的结论,且金相组织稳定,不易存在热损伤,具有可控的残余应力分布和较高的加工效率,有利于产业化生产高精密轴承。利用磁性卡盘装夹套圈,分析试样基准面平面度对精密硬车削套圈沟道圆度的影响,发现提高基准面平面度可以有效提高加工套圈的沟道圆度;分析了刀具磨损对硬车削套圈加工精度的影响,得出在精密加工阶段刀具磨损量是控制套圈圆度的重要监控工艺参数的结论。  相似文献   

13.
The hard turning process, defined as single-point turning of materials harder than HR C 58, differs from conventional turning because of the hardness of the work materials and cutting tools needed in the process. In hard turning, tool life is very short, of the order of a few minutes, during which time the cutting tool is subjected to extreme stress and tempera-ture. In this regard, it is well known that CBN tools are well suited for this process despite their high cost. In this research, we studied the feasibility of using lower-cost cutting tools such as TiN coated tools. To this end, a new cooling system was designed using an air–oil method, which is based on the principle of air vortex flow, for reducing tool temperature. In this system, the temperature of air at the outlet is lowered by more than 20°C using pressurised air of 5 kgf cm −2 at the inlet. The cooled air ejected at the tip of the cutting tool lowers tool temperature, and reduces the wear of a TiN coated tool to give 30% of CBN tool life with respect to the same cutting length.  相似文献   

14.
In the present work, the performance of cubic boron nitride (CBN) inserts was compared with coated carbide and cryogenically treated coated/uncoated carbide inserts in terms of flank wear, surface roughness, white layer formation, and microhardness variation under dry cutting conditions for finish turning of hardened AISI H11 steel (48–49 HRC). The flank wear of CBN tools was observed to be lower than that of other inserts, but the accumulated machining time for all the four edges of carbide inserts were nearer to or better than the PCBN inserts. Results showed that tool life of carbide inserts decreased at higher cutting speeds. The surface roughness achieved under all cutting conditions for coated-carbide-treated/untreated inserts was comparable with that achieved with CBN inserts and was below 1.6 μm. The white layer formation and microhardness variation is less while turning with cryogenically treated carbide inserts than the CBN and untreated carbide. At low to medium cutting speed and feed, the performance of carbide inserts was comparable with CBN both in terms of tool life and surface integrity.  相似文献   

15.
Hard machining is attracting more and more attention as an alternative to grinding in finish machining some hardened steels. The saw-toothed chips formed in hard machining have their own unique characteristics. The saw-toothed chip morphology is of great interest since the understanding of the saw-toothed chip morphology and its evolution in machining helps unveil hard machining chip formation mechanisms as well as facilitate hard machining implementation into industry. In this study, the effect of tool wear and cutting conditions on the saw-toothed chip morphology was examined in machining 52100 hardened 52100 bearing steel. It was found that the chip dimensional values and segmentation frequency were affected by tool wear and cutting conditions while the chip segmentation angles were approximately constant under different tool wear and cutting conditions. The shear band spacing has also been predicted at the same order of magnitude as the measurement, and improved spacing modeling accuracy is expected if the cutting process information can be better predicted first.  相似文献   

16.
Hard machining is attracting more and more attention as an alternative to grinding in finish machining some hardened steels. The saw-toothed chips formed in hard machining have their own unique characteristics. The saw-toothed chip morphology is of great interest since the understanding of the saw-toothed chip morphology and its evolution in machining helps unveil hard machining chip formation mechanisms as well as facilitate hard machining implementation into industry. In this study, the effect of tool wear and cutting conditions on the saw-toothed chip morphology was examined in machining 52100 hardened 52100 bearing steel. It was found that the chip dimensional values and segmentation frequency were affected by tool wear and cutting conditions while the chip segmentation angles were approximately constant under different tool wear and cutting conditions. The shear band spacing has also been predicted at the same order of magnitude as the measurement, and improved spacing modeling accuracy is expected if the cutting process information can be better predicted first.  相似文献   

17.
Hard turning is a profitable alternative to finish grinding. The ultimate aim of hard turning is to remove work piece material in a single cut rather than a lengthy grinding operation in order to reduce processing time, production cost, surface roughness, and setup time, and to remain competitive. In recent years, interrupted hard turning, which is the process of turning hardened parts with areas of interrupted surfaces, has also been encouraged. The process of hard turning offers many potential benefits compared to the conventional grinding operation. Additionally, tool wear, tool life, quality of surface turned, and amount of material removed are also predicted. In this analysis, 18 different machining conditions, with three different grades of polycrystalline cubic boron nitride (PCBN), cutting tool are considered. This paper describes the various characteristics in terms of component quality, tool life, tool wear, effects of individual parameters on tool life and material removal, and economics of operation. The newer solution, a hard turning operation, is performed on a lathe. In this study, the PCBN tool inserts are used with a WIDAX PT GNR 2525 M16 tool holder. The hardened material selected for hard turning is commercially available engine crank pin material.  相似文献   

18.
Sliding guideways have received renewed interest in recent years as machine tool linear motion guides, due to a demand for machine tools to have good dynamic performance, which is of vital importance when machining difficult-to-cut materials. While the traditional fabrication approach of the sliding surface is grinding, this paper investigated the possibility of an alternative cubic boron nitride (CBN) milling-based manufacturing approach while utilizing Al and Mg additives in the cast iron material for better machinability and productivity. Machining results have shown a dramatic improvement in machinability especially in terms of tool wear at certain cutting conditions with the refined hardened cast iron and a CBN tool. It was found by the post experimental analysis that oxide films of the Al and Mg additives were generated at the cutting edge of the CBN tool to protect the tool from wear. Because of suppression of tool wear, a very constant surface roughness can also be achieved. A case study has also demonstrated the effectiveness of the CBN milling-based manufacturing approach with the refined cast iron and the found high-speed cutting conditions.  相似文献   

19.
White layers are hard, brittle and normally associated with a tensile stress and hence the ability to reduce the fatigue life of machined components. Several authors have reported the formation of white layers on components after turning processes by using CBN/PCBN and ceramic cutting tools. However, there are hardly any studies that have reported on white layer formation for new and low-cost-coated carbides. The study in this paper was conducted to determine the effect of CrTiAlN and CrTiAlN+MoST and high cutting speeds on white layer formation in machining tool steel. H13 tool steel (57 HRC) was examined after turning at a conventional and high cutting speed. Coated tools resulted in lower workpiece and tool temperatures. Hence coated tools resulted in reduced and also more homogeneous hardening effects compared to the uncoated tool. In addition, the higher cutting speed produced negligible white layers. Thus, the paper elucidates on the benefits of coatings on surface hardening in conventional and high speed machining.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号