首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unidirectional polarization-insensitive multiple quantum well laser amplifier module for the 1300-nm window with a record high gain of 27 dB and a 3-dB saturation output power of 13 dBm is demonstrated. The module gain has a 3-dB width exceeding 60 nm and shows a typical polarization sensitivity and gain ripple as low as 0.3 dB. To provide immunity for backscattered or reflected light, polarization independent optical isolators were inserted in the input and output coupling optics of the package. A practical optical amplifier module for the 1300-nm window is very desirable, because most of the presently installed fiber has its zero dispersion wavelength around 1310 mm, while much of the older fiber often only can be operated around this wavelength  相似文献   

2.
We demonstrate a microstructure-fiber (MF)-based supercontinuum source and a synchronously pumped optical parametric oscillator in the 1550-nm regime. By using a 12.5-m-long MF, we obtained a 10-GHz repetition-rate picosecond-pulse source that is capable of /spl sim/120-nm wavelength tunability due to the wide-gain bandwidth of the combined processes of stimulated Raman scattering and parametric four-wave mixing.  相似文献   

3.
This paper proposes a maintenance method for optical fiber cable networks that uses 1650-nm wavelength band light. We determined the maintenance wavelength of 1650-nm after considering the maintenance system requirements and the future trends in optical transmission systems. We improved the conventional maintenance system by adding appropriate system components including a narrow wavelength light source and a fiber-grating filter for the 1650-nm wavelength band. We designed the system and undertook manufacturing trials. The characteristics of our proposed maintenance method indicate good practical performance levels  相似文献   

4.
Plasma-enhanced chemical vapor deposition (PECVD) offers a simple way of fabricating (doped) silica layers on silicon. A new design of the waveguide core allows low-loss fiber matched waveguides with low birefringence without high-temperature annealing. The increased loss of doped plasma deposited silica due to hydrogen incorporation is overcome by reducing the core dimensions and increasing the refractive index contrast. The waveguides can easily be fabricated using standard PECVD technologies and resist masked reactive ion etching (RIE) etching. Integrated optical devices such as 1/spl times/8 power splitters, 1300/1550-nm wavelength multiplexers and thermooptical switches were successfully fabricated and tested.  相似文献   

5.
We show that the use of a long semiconductor optical amplifier increases the error-free conversion interval of a four-wave mixing (FWM)-based wavelength converter. 30-nm wavelength down-conversion and 15-nm up-conversion have been obtained at 10 Gb/s. This result is a significant improvement over the previous best performance of a FWM-based wavelength converter and suggests that the full erbium-doped fiber amplifier bandwidth can be covered with FWM wavelength converters  相似文献   

6.
We report on a broad-band all-optical switch that exhibits high linearity (>30 dB), high switching contrast (>25 dB), and large data wavelength tunability (100 nm). The switching principle is based on four-wave mixing. Two control pulse trains are placed in the gain wavelength region of a 1300-nm semiconductor-optical amplifier. The data signal, however, is at 1550 nm in the transparent wavelength region where four-wave mixing sidebands are generated due to index modulations. The switch is used to sample a 160-Gb/s data signal with a temporal resolution of approximately 1.7 ps  相似文献   

7.
A 1310 to 1550 nm wavelength converter based on nonlinear polarisation rotation in a single semiconductor optical amplifier is demonstrated. Error-free 1310 to 1550 nm wavelength conversion is shown at 20 Gbit/s.  相似文献   

8.
The polarization dependence of 1550-nm semiconductor optical amplifiers (SOA's) containing tensile and compressive wells has been investigated both theoretically and experimentally. Our model to predict the polarization-resolved (TE and TM) gain spectra of these structures has been confirmed by amplified spontaneous emission measurements. It is found that there can be appreciable carrier redistribution between the two types of wells when the tensile layers have the large thickness (greater than 100 Å) needed for gain at wavelengths around 1550 nm. This carrier redistribution can significantly modify the ratio of the gains for different polarizations, in particular, decreasing the TM gain with respect to the TE gain, and, hence, is an important design consideration. We use our model and experimental data to explore design criteria for 1550-nm polarization-independent SOA's  相似文献   

9.
《Optical Fiber Technology》2013,19(3):206-212
We experimentally compare the performance of two commercially available vertical-cavity surface-emitting laser diodes (VCSELs), a multi-mode 850-nm and a single-mode 1550-nm, exploiting on–off keying/direct detection (OOK/DD), and orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16-ary quadrature amplitude modulation (16QAM) with direct detection, over SMF (100 m and 5 km) and MMF (100 m and 1 km) short-range links, for their potential application in low-cost rack-to-rack optical interconnects. Moreover, we assess the performance of quaternary-pulse amplitude modulation (4-PAM), for the 1550-nm transmitter over SMF and MMF links and we compare it to the data-rate equivalent NRZ-OOK. The extensive performance comparison under various transmission scenarios shows the superiority of 1550-nm single-mode VCSEL compared to its multi-mode 850-nm counterpart. Moreover, OFDM/DD and 4-PAM in conjunction with low-cost, inexpensive VCSELs as transmitters prove to be an enabling technology for next-generation WDM, point-to-point, short-reach, SMF/MMF optical interconnects and potential candidates to substitute NRZ-OOK. Nevertheless, the sensitivity requirements are higher in that case, whereas these advanced, spectrally-efficient modulation formats become severely degraded when transmitted over MMF links, especially, when employing the inexpensive 850-nm VCSELs as transmitter. Finally, we compare the performance of the point-to-point links under investigation to the performance of a semiconductor optical amplifier (SOA)- based, scalable permutation switch fabric, the Optical Shared MemOry Supercomputer Interconnect System (OSMOSIS).  相似文献   

10.
Ten-channel wavelength conversion is achieved by exploiting cascaded second-order nonlinearity in periodically poled LiNbO/sub 3/ waveguides. No external pump input is required in the converter and conversion efficiency is improved due to the enhancement of pump and signal interaction. Approximate 70-nm conversion bandwidth is realized under pump power less than 25 mW at 1550-nm band.  相似文献   

11.
A practical 1550-nm polarization independent semiconductor optical amplifier configuration employing compressively strained quantum wells and a few commercially available optical components is reported. Crosstalk from counter propagating light, which may easily occur in such a configuration, has been sufficiently suppressed for practical use. For the entire configuration a net fiber-to-fiber gain of 17 dB, a 3-dB saturation output power of 13 dBm and a noise figure of 9 dB have been demonstrated. The polarization dependence was only 0.7 dB. The polarization independent 1550-nm semiconductor optical amplifier reported here is attractive when power consumption and compactness are of major concern and especially for applications involving nonlinear signal processing and switching.  相似文献   

12.
In this letter, we demonstrate a new method to control gain tilt in long wavelength erbium-doped fiber amplifiers by using an external light source in 1550-nm range (called control source). The wavelength or its input power is adjusted to reduce gain tilt. The tilted gain is diminished from 7.18 to 0.07 dB by adjusting control source wavelength, and from 9.95 to 0.62 dB by adjusting control source input power in a 1570-1590-nm signal wavelength range  相似文献   

13.
We report on the fabrication of optical channel waveguide on a high-energy-beam sensitive glass using a maskless nonphotolithographic processing technique. Laser direct writing and one-step chemical etching result in high quality channel waveguide with a propagation loss of about -0.27 dB/cm at 1550-nm wavelength.  相似文献   

14.
We analyzed the applicability of externally modulated 1550-nm laser transmitters for trunking and distribution of AM CATV channels using power and in-line EDFA's. The distribution of multiple AM CATV channels over long fiber spans is degraded by the presence of Rayleigh backscatter-induced low-frequency interferometric noise. When the laser source is modulated externally, the low-frequency interferometric noise is mixed and translated around the AM carriers. Furthermore, when isolators are not used with the optical amplifiers, the low end of the broadcast channels could be severely degraded due to doubly amplified Rayleigh backscatter. Employing narrow-linewidth semiconductor or Nd:YAG laser sources at the transmitter will lower the tail of the low-frequency interferometric noise level but will increase the translated noise peak level at each AM carrier. Therefore, the standard CNR measurement techniques, which assumes the noise spectrum is flat, may not reveal the correct video picture quality seen at the customer premises. In this analysis, we compared NCTA RF CNR and baseband video SNR results using CCIR recommended unified weighting filter. We determined that for laser linewidth less than 1 MHz and with long fiber spans, baseband video SNR as opposed to RF CNR measurements should be used to characterize the performance of AM-VSB CATV broadcast distribution systems. Finally, an experimental 78-channel AM-VSB CATV distribution system is constructed employing two EDFA's simulating head-end and hub sites and we compared RF CNR and baseband video SNR measurements using a 700-kHz linewidth externally modulated 1550-nm DFB transmitter  相似文献   

15.
Erbium-doped fibers are characterized using loss and gain coefficients, and one amplifier saturation parameter. With a large-signal amplifier model that resolves the amplified spontaneous emission spectrum, these easily measured parameters allow the fiber performance in 980-nm or 1480-nm pumped optical amplifiers to be assessed rapidly. In tests at 980-nm pump wavelength, good agreement between the theoretical and experimentally measured gains was obtained with amplifiers having either germano-silicate or germano-alumino-silicate core fibers.<>  相似文献   

16.
Planar lightwave circuits based on III-nitride wide-bandgap semiconductors are proposed and the feasibility of developing III-nitride-based novel photonic integrated circuits for applications in fiber-optical communications is discussed. III-nitrides have low attenuation in the near-infrared wavelength region because of their wide bandgaps, while as semiconductors their refractive indexes can be modulated by carrier injection. III-nitrides are also well known for their ability to operate at high temperatures, high power levels and in harsh environments. These characteristics make III-nitrides ideal candidates for tunable optical phased-array (PHASAR) devices for optical communications. We have characterized the optical properties of Al/sub x/Ga/sub 1-x/N epilayers in the 1550-nm wavelength region, including the refractive indexes and the impact of Al concentrations. Single-mode ridged optical waveguide devices using GaN-AlGaN heterostructures have been designed, fabricated and characterized for operation in the 1550-nm wavelength window. The birefringence of wurtzite GaN grown on sapphire substrate has been observed. Refractive indexes were found to be different for signal optical field perpendicular and parallel to the crystal c axis (n/sub /spl perp// /spl ne/ n/sub ///). More importantly, we found an approximately 10% change in the index difference /spl Delta/n=n/sub ///-n/sub /spl perp// with varying the waveguide orientation within the c plane, and a 60/spl deg/ periodicity was clearly observed. This is attributed to the hexagonal structure of the nitride materials. Various functional waveguide devices have been realized, including 2/spl times/2 directional couplers and eight-wavelength array-waveguide gratings. Theoretical predictions of temperature sensitivity and the efficiency of carrier-induced refractive change are provided.  相似文献   

17.
We report on experimental investigation of the dependence on pump-wavelength of efficiency and signal to background ratio of a wavelength converter based on four-wave mixing in a semiconductor optical amplifier (SOA). The signal wavelength has been varied over a 60-nm range at fixed signal-converted detuning. Both efficiency and background level increase by moving the operation wavelength toward bandgap. Nevertheless, we observe a variation of the signal to background ratio of only 2 dB in a 40-nm range. A qualitative interpretation of the results is presented.  相似文献   

18.
A wavelength converter that uses four-wave mixing (FWM) in an SOA-integrated distributed-feedback (DFB) laser was demonstrated. Lossless conversion up to 300-GHz detuning and a conversion efficiency of -5 dB at 1-THz detuning was achieved. The device exhibited low ASE (noise) level, and noise figure (NF) characteristics of 24 dB for 16-nm wavelength conversion was observed. This high-efficiency FWM wavelength conversion provided by a single device is promising for optical wavelength shifters in large-scale optical communication systems  相似文献   

19.
We present a novel type of 1300-nm horizontal-cavity surface-emitting buried heterostructure distributed feedback (DFB) lasers showing high optical output power and uncooled direct modulation capability of 7.5 Gb/s. These lasers can be fabricated and tested using on-wafer techniques only, so the overall fabrication costs are considerably lower than with conventional edge-emitting DFB lasers.  相似文献   

20.
A method for the determination of equivalent step index (ESI) parameters for a given single-mode fiber is presented. The method is based on the matching of bend loss characteristics and (Petermann II) spot size at one wavelength. Numerical simulation studies have been carried out for fibers with parabolic and triangular index profiles having zero total dispersion at 1300 or 1550 nm. The results show that the method gives a model that is both stable with respect to the matched wavelength in the 1500-1600-nm range and accurate for predicting fiber characteristics such as spot size, waveguide dispersion, bend loss, and the cutoff wavelength (of the next higher mode) over this range of wavelength  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号