共查询到17条相似文献,搜索用时 0 毫秒
1.
Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 °C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C∗ and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C∗. Several formulae exist for calculating the reference stress depending on whether it is based on a ‘global’ or a ‘local’ collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the ‘global’ reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to −1.0 is to cause an acceleration in the early stage of cracking. 相似文献
2.
J. Xu Z.L. Zhang E. Østby B. Nyhus D.B. Sun 《International Journal of Pressure Vessels and Piping》2009
A strong geometry dependence of ductile crack growth resistance emerges under large scale yielding. The geometry dependence is associated with different levels of crack tip constraint conditions. However, in a recent attempt to identify appropriate fracture mechanics specimens for pipeline steels, an “independent” relationship between the crack growth resistance curves and crack depths for SENT specimens has been observed experimentally. In this paper, we use the complete Gurson model to study the effects of crack depth and specimen size on ductile crack growth behavior. Crack growth resistance curves for plane strain, mode I crack growth under large scale yielding conditions have been computed. SENB and SENT specimens with three different specimen sizes, each specimen size with three different crack depths, have been selected. It has been found that crack tip constraint (Q-parameter) has a weak dependence on the crack depth for specimens in the low constraint regime. 相似文献
3.
S. Cicero R. Lacalle R. Cicero D. Ferreño 《International Journal of Pressure Vessels and Piping》2009
This paper analyses the structural integrity of the marine stretch of a pipeline which is placed over a natural bay. The pipeline is part of a 30-year-old installation used for the provision of petrochemical products to a nearby chemical plant. Although there have been no relevant leaks in the past, both the visual inspections performed (revealing numerous local thin areas) and the fact that it is located in a highly sensitive place with high ecological and tourist value recommend the assessment of the pipeline in order to ensure that it is working in safe conditions and that there are no risks for the environment or the people living in the surrounding area. The assessment has been performed using the newly developed FITNET FFS procedure, whose local thin areas assessment methodology is also explained and compared to the analyses proposed by other well known procedures. 相似文献
4.
Electrochemical hydrogen permeation tests were performed to measure the hydrogen permeation current through the X-65 pipeline steel in the electrolytes simulating the soil conditions to initiate near-neutral pH stress corrosion cracking (SCC) in pipelines. The hydrogen permeation current was analyzed following the constant concentration model. It is shown that, AQDS, simulating the organic compound in the soil, inhibits hydrogen permeation by decreasing the sub-surface hydrogen concentration, while sulfide promotes hydrogen permeation by inhibiting the hydrogen recombination and thus increasing the sub-surface hydrogen concentration. The steel specimen is more susceptible to stress corrosion cracking in the soil solution with a higher sub-surface hydrogen concentration, indicating that hydrogen is involved in near-neutral pH SCC in pipelines. It is suggested that hydrogen promotes the cracking of the steel, accompanying with the anodic dissolution on the crack sides and at the crack tip. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(26):9845-9860
Fracture and crack growth is one of the main degradation mechanisms in solid oxide cells (SOCs). However, the modeling of crack growth in SOCs is challenging due to their complex microstructures and possible plasticity development within the Ni particles in Ni-based SOC electrodes. In this study, a phase-field fracture model is developed, which incorporates the SOC microstructures and phase-dependent material properties, including yield strength, fracture toughness in the bulk and at the interphase boundaries. The model is employed to study crack initiation and growth under thermal and redox cycling on the hydrogen electrode side of SOCs. The simulation results demonstrate that under thermal cycling, work-zone cracking dominates in electrolyte-supported SOCs with cracks initiated at the triple-phase boundaries, while only minor mechanical degradation occurs in hydrogen-electrode-supported SOCs after hundreds of thermal cycles. Under redox cycling, through-cracking of yttria-stabilized zirconia (YSZ) in the hydrogen electrode and electrolyte layers dominates. The simulation results suggest several crack-mitigation strategies, including decreasing the porosity in the hydrogen electrode support layer and synchronizing thermal strain to balance oxidation strain. 相似文献
6.
T. Matsumoto M. Kubota S. Matsuoka P. Ginet J. Furtado F. Barbier 《International Journal of Hydrogen Energy》2017,42(11):7422-7428
In order to determine appropriate value for threshold stress intensity factor for hydrogen-assisted cracking (KIH), constant-displacement and rising-load tests were conducted in high-pressure hydrogen gas for JIS-SCM435 low alloy steel (Cr-Mo steel) used as stationary storage buffer of a hydrogen refuelling station with 0.2% proof strength and ultimate tensile strength equal to 772 MPa and 948 MPa respectively. Thresholds for crack arrest under constant displacement and for crack initiation under rising load were identified. The crack arrest threshold under constant displacement was 44.3 MPa m1/2 to 44.5 MPa m1/2 when small-scale yielding and plane-strain criteria were satisfied and the crack initiation threshold under rising load was 33.1 MPa m1/2 to 41.1 MPa m1/2 in 115 MPa hydrogen gas. The crack arrest threshold was roughly equivalent to the crack initiation threshold although the crack initiation threshold showed slightly more conservative values. It was considered that both test methods could be suitable to determine appropriate value for KIH for this material. 相似文献
7.
A new method, which is based on formation fracturing test and Kaiser effect method, has been developed for confirming the oilfield in-situ stress in this paper. The new method has been used in a certain oilfield of China and the determined oilfield in-situ stresses is more accurate than that based on one single method. 相似文献
8.
A new method is developed for the evaluation of a crack shape based on a given stress intensity factor (SIF) distribution for a surface crack under Mode-I loading conditions. The SIF distribution along the crack front is investigated using a direct simulation technique, in which the effect of crack closure on fatigue crack growth is considered. Then a SIF distribution function is chosen based on the numerical results. Crack shape (and the SIF) is achieved based on the given SIF distribution function using a numerical iterative procedure. Empirical SIF equations for surface cracks in plates subjected to tension and pure bending fatigue load are determined by systematic curve fitting of the numerical results. The depth ratio and the aspect ratio are considered in the ranges of 0.1–0.9 and 0.2–1.2, respectively. The aspect-ratio variation of surface cracks under fatigue loading is predicted. The application of the new method to predict the shape of a surface crack in plates subjected to tension and pure bending and comparisons of the results obtained with the predictions of the empirical equations proposed by Newman and Raju are presented. 相似文献
9.
The in situ stress state and rock strength are key parameters in a number of problems concerning petroleum and geothermal reservoir development, particularly in well stimulation and optimum wellbore trajectory analyses. Inversion techniques utilized to determine the in situ stress and rock strength based on the observation of borehole failure and its analysis often assume elastic rock behavior. However, when drilling through high-pressure and high-temperature rocks, coupled poro-thermo-mechanical processes result in a time-dependent stress and pore pressure distribution around the borehole. In this work, the poro-thermoelastic effects on borehole failure are studied and their impact on wellbore stability and the estimations of the in situ maximum horizontal stress and rock strength using wellbore failure data are investigated. It is shown that coupled poro-thermo-mechanical effects influence both failure mode and potential. Also, when considering shear failure, neglecting heating and cooling effects will underestimate and overestimate rock strength, respectively. Therefore, for accurate assessment of wellbore stability and inversion of wellbore failure data, poroelastic and thermal factors should be considered. 相似文献
10.
通过饱和砂土的固结不排水三轴试验结果,在不同应力平面(强度发挥面及SMP面)上,对剪正应力比~剪正应变增量比及剪正应力比~剪正应变全量比关系进行了研究,得知:不同面上应力比~应变增量比具有较强的线性关系,应力比~应变全量比关系与σ1-σ3~ε1关系的型式相关,在硬化型及软化型的峰值点以前仍有线性关系,并得到了密度、周围压力、应力平面对其线性参数影响的一些规律性认识。 相似文献
11.
12.
M.R. Wenman A.J. Price A. Steuwer P.R. Chard-Tuckey A. Crocombe 《International Journal of Pressure Vessels and Piping》2009
The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (∼5–10 μm grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients. 相似文献
13.
Several new concepts to increase the conversion efficiency of solar cells have been presented over the last few years. One possibility is the multi-interface novel device solar cell with a highly doped amorphised substructure inserted in the emitter. This active nanostructure is created by P ion implantation followed by an adequate thermal treatment necessary to form two sharp a-Si/c-Si heterointerfaces. After an incomplete initial thermal treatment at 500°C, dark current–voltage (I–V) characteristics were measured after each of several complementary thermal treatments. In this paper, we show that the classical two-diode model has to include a voltage reduction resulting from the two low–high-type interfaces in order to correctly fit the experimental curves. 相似文献
14.
D. Srinivasacharya N. SrinivasacharyuluO. Odelu 《International Communications in Heat and Mass Transfer》2009
In this paper, an incompressible laminar flow of a couple stress fluid in a porous channel with expanding or contracting walls is considered. Assuming symmetric injection or suction along the uniformly expanding porous walls and using similarity transformations, the governing equations are reduced to nonlinear ordinary differential equations. The resulting equations are then solved numerically using quasilinearization technique. The graphs for velocity components and temperature distribution are presented for different values of the fluid and geometric parameters. 相似文献
15.
In this study, a geometry optimization of welding joint between tower and bottom flange in a wind turbine is performed based on residual stress considerations. A sequentially coupling finite element analysis (FEA) program is developed to simulate the welding temperature and residual stress. Using this FEA program, four FE models with different bevel are developed to calculate their residual stresses, which are compared to optimize the weld geometry. The results show that complex residual stresses are generated and concentrated in the fillet weld. Using K type bevel with internal concave fillet and outside convex fillet can obtain the minimal residual stress, which provides a reference the fabrication of wind turbines. 相似文献
16.
This paper looks at heat and mass transfer effects on an unsteady MHD flow of a couple‐stress fluid in a horizontal wavy porous space with travelling thermal waves in the presence of a heat source and viscous dissipation. Initially the temperatures of the walls are maintained at different constant temperatures. The analytical expressions for velocity, temperature, and concentration field are obtained by the regular perturbation technique. The results are presented graphically for various values of emerging dimensionless parameters of the problem and are discussed to show interesting aspects of the solution. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21040 PACS: 44.15.+a, 44.30.+f, 44.27.nd, 47.50.Cd 相似文献
17.
Muhammad Zain-ul-abdein Daniel Nélias Jean-François Jullien Fréderic Boitout Luc Dischert Xavier Noe 《International Journal of Pressure Vessels and Piping》2011
Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses. 相似文献