首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A nanocomposite of (chitosan/polyacrylamide/gold) (Cs/AAm/Au) and (chitosan/polyacrylamide) (Cs/AAm) hydrogel were performed using gamma radiation and employed as a carrier for Cisplatin cancer drug. The structure and morphology were studied by FTIR and FE-SEM, respectively. XRD and TEM confirmed the formation of the nanoconposite. The average particle size ranged between 13 to 27?nm. EDX estimated that the concentration of Au0 nanoparticles in (Cs/AAm/Au) nanocomposite was 0.20%. Both (Cs/AAm) and (Cs/AAm/Au) have higher swelling percent and reached the swelling equilibrium within 6?h. The optimum pH of swelling was at pH 7.2. The maximum Cisplatin drug released was 33% for Cs/AAm hydrogel and 96% for Cs/AAm/Au nanocomposite at pH 7.2 through 320 and 410?min, respectively. The release mechanism was found to be followed the non-Fickian diffusion mechanism for both systems. The cytotoxicity against liver cancer (HepG2) was investigated. Cisplatin drug loaded samples (Cs/AAm) drug loaded hydrogel of concentration 100?μg/ml killed 76.4% of the cells and IC50 reached 29?μg/ml whereas (Cs/AAm/Au) drug loaded nanocomposite killed 84.9 of the cells and IC50 reached 22.7?μg/ml.  相似文献   

2.
In this work, chitosan–gelatin/zinc oxide nanocomposite hydrogel scaffolds (CS–GEL/nZnO) were prepared via in situ synthesis of ZnO nanoparticles (nZnO) to reach a scaffold with both inherent antibacterial and drug delivery properties. The prepared nanocomposite hydrogel scaffolds were characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectrometer, Fourier transform infrared spectroscopy, and X-ray diffraction. In addition, swelling, biodegradation, antibacterial, cytocompatibility, and cell attachment of the scaffolds were evaluated. The results showed that the prepared scaffolds had high porosity with a pore size of 50–400 μm and nZnO were well distributed without any agglomeration on the CS–GEL matrix. In addition, the nanocomposite scaffolds showed enhanced swelling, biodegradation, and antibacterial properties. Moreover, the drug delivery studies using naproxen showed that nZnO could control naproxen release. Cytocompatibility of the samples was proved using normal human dermal fibroblast cells (HFF2). In comparison to the previous reports which nZnO were simply added to the matrix of the scaffold, in situ synthesis of nZnO was led to higher antibacterial and lower cytotoxicity effects as a result of well distribution of nZnO in this method. According to the findings, the in situ synthesized CS–GEL/nZnO is strongly recommended for biomedical applications especially skin tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47590.  相似文献   

3.
Many efforts have been made to develop modern wound dressings to overcome limitations of traditional ones. Smart nanocomposite hydrogels are appropriate candidates. In this work, a novel responsive nanocomposite hydrogel based on poly(vinyl alcohol)/chitosan/honey/clay was developed and evaluated as a novel wound dressing. The morphology and properties of synthesized nanocomposite hydrogels loaded with honey as a drug model were investigated. The exfoliated morphology of nanocomposite was confirmed by X‐ray diffractometry. Swelling studies were performed at 20 and 37 °C at various pH. The results showed that swelling increased as a result of temperature rise and maximum swelling occurred at a pH of 2. In vitro release of honey was also studied at the same conditions. Corresponding results indicated faster honey release rate at higher pH values. MTT results exhibited no cytotoxicity in nanocomposite hydrogel system. Investigation of antibacterial activity revealed more than 99% antibacterial activity for proposed system. In vivo results confirmed the wound healing ability of developed system. Generally, appropriate properties of proposed system made it ideal in wound dressing applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46311.  相似文献   

4.
Films of chitosan/polyvinyl alcohol (PVA)/sepiolite nanocomposite were prepared by a simple and “green” route through solution mixing; followed by freezing–thawing cycles. The structures of nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis, X-ray diffractometry, and Fourier transform infrared spectroscopy. The SEM and TEM micrographs confirmed a needle-type dispersion of sepiolite nanoclay in the hydrogel nanocomposites. The effects of sepiolite and chitosan/PVA weight ratio on the swelling of nanocomposites were investigated. The water absorbency of nanocomposites was decreased by introducing sepiolite nanoclay. The nanocomposites with high content of chitosan showed high swelling capacity. The nanocomposite films showed pH-dependent swelling behavior with a maximum water absorbency under acidic pH. The cefazolin with a broad-spectrum activity toward gram-positive and gram-negative bacteria was loaded in hydrogels. The release of cefazolin from nanocomposites was evaluated at pH 7.4. The content of released drug was affected by both sepiolite amount and chitosan/PVA weight ratio. The nanocomposites films released more cefazolin than the neat hydrogel film. Cefazolin-loaded nanocomposites showed the antibacterial activity with a large zone of inhibition against gram-positive Bacillus cereus bacterium.  相似文献   

5.
This paper reports a temperature-sensitive poly(N-isopropylacryamide-co-acrylamide)/montmorillonite (P(NIPAAm-co-Am)/MMT) nanocomposite hydrogel with enhanced mechanical properties and thermodynamic stability based on chitosan and nanoparticle MMT. With biodegradable N-maleyl chitosan crosslinker, the temperature-sensitive nanocomposite hydrogel was prepared by free radical polymerization in aqueous solution, using N-isopropylacryamide (NIPAAm), acrylamide (Am), and montmorillonite (MMT) as materials. The clay content varied from 0 to 7 wt% (based on the monomer). The temperature-sensitive behavior, mechanical property, thermodynamic stability, and enzymatic degradation of the nanocomposite hydrogels were investigated in detail.  相似文献   

6.
This work describes the preparation, the swelling properties and the potassium diclofenac (KDF) release profile of hydrogels of gum arabic (GA), N′,N′‐dimethylacrylamide, and methacrylic acid. In order to convert GA into a hydrogel, the polysaccharide was vinyl‐modified with glycidyl methacrylate. The hydrogels showed pH‐responsive swelling changes, which were more expressive in the basic environment. Release data of KDF were adjusted to a diffusion‐based kinetic model that provides an important insight on affinity of the drug for hydrogel and solvent, which may be the leading parameter for release of guest molecules from polymers. The KDF release from the hydrogels into simulated intestinal fluid decreases when the amount of modified GA increases. This was demonstrated to be due to the higher affinity of KDF for GA‐richer hydrogel, which makes the anti‐inflammatory release less favorable. The analysis of released drug half‐time (t1/2 = 16.10 and 21.51 h) indicated sustained release characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43319.  相似文献   

7.
A novel slow release fertilizer hydrogel nanocomposite was prepared via free radical polymerization of sodium alginate, acrylic acid, acrylamide, and clinoptilolite using N, N?-methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator. Evidence of grafting and component interactions was obtained by a comparison of the Fourier transform infrared spectra of the initial substrates and hydrogel without clinoptilolite with that of the hydrogel nanocomposite containing clinoptilolite. The swelling behavior of both hydrogels in solutions of various pHs (2-12) and various saline solutions such as NaCl, KCl, CaCl2 and FeCl3 as well as swelling kinetics were investigated. Results showed that the swelling of hydrogels depends on the solution pH value. Also, the swelling of both hydrogels in all salt solutions is significantly lower than that of the values in distilled water. After those characterizations, the potential application was verified through sorption and fertilizer releasing from the hydrogel with and without clinoptilolite zeolite. The presence of the clinoptilolite zeolite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel. The results of the fertilizer release of hydrogel nanocomposite were also encouraging in order to find applications in agriculture. Consequently, the good slow release fertilizer property as well as the good water adsorption capacity showed that this formulation is potentially viable to be used in agriculture as a nutrient carrier vehicle.  相似文献   

8.
In the present work, a nanocomposite hydrogel is designed consisting of gum acacia, poly(acrylamide) and carbon nitride by facile microwave approach. This nanocomposite hydrogel is sensitive to environmental stimuli which is essential for its application in environmental remediation and as a drug delivery system. The effects of carbon nitride percentage and microwave Watt variation on swelling capacity of gum acacia‐cl‐poly(acrylamide)@carbon nitride (Ga‐cl‐PAM@C3N4) nanocomposite hydrogel are analyzed. The structural characterizations are considered by numerous techniques such as FTIR (Fourier transform infra‐red spectroscopy), X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, and elemental mapping. Batch experiment is performed for remediation of ciprofloxacin (CIP) drug from water. Various parameters such as effect of ciprofloxacin doses, Ga‐cl‐PAM@C3N4 nanocomposite hydrogel dosage, pH, time and temperature for adsorption of CIP on gum acacia‐cl‐poly(acrylamide)@carbon nitride nanocomposite hydrogel is examined. Maximum adsorption capacity of Ga‐cl‐PAM@C3N4 nanocomposite hydrogel observed is 169.49 mg g?1 at pH 6.4. The drug loading and drug release capacity of Ga‐cl‐PAM@C3N4 nanocomposite hydrogel is investigated for ciprofloxacin. Drug release is monitored in artificial ocular solution (pH 8), saline (pH 5.5), acetate buffer (pH 2.2), and distilled water. Maximum drug release is observed in artificial ocular solution.  相似文献   

9.
Over the last decade, nanocomposite hydrogels have been provided a new approach for the biomedical field. In this work, a novel pH-responsive nanocomposite hydrogel was fabricated using simultaneous in situ formation of magnetite iron oxide nanoparticles and hydrogel networks of poly(acrylic acid) grafted onto chitosan. The effects of various types of precursor molecules, pH, salt, and loading pressure were examined on the swelling properties of resulting nanocomposite hydrogels. The synthesized nanocomposite hydrogel was well characterized using different instruments. In vitro drug releasing behavior of doxorubicin was studied at pH 5.4 and 7.4. The drug release mechanism was investigated through different kinetic models. These experimental results open a new opportunity to make pH-responsive nanocomposite hydrogel devices for controlled delivery of drug.  相似文献   

10.
We prepared a hydroxypropyl methyl cellulose-sodium alginate (HPMC-SA) composite hydrogel with a membrane covering the semi-interpenetrating network based on a semi-synthetic polymer hydroxypropyl methyl cellulose (HPMC) and a natural polymer sodium alginate (SA) by Ca2+ crosslinking and polyelectrolyte complexation with chitosan (CS) covering the hydrogel surface. The physiochemical properties of HPMC-SA hydrogels were evaluated by scanning electron microscopy, infrared spectrum, X-ray diffraction, and thermogravimetric analysis. The swelling ratio of the HPMC-SA composite hydrogel in simulated gastrointestinal fluid was measured. The drug release behavior of the HPMC-SA composite hydrogel for macro-molecular and small-molecule drugs was evaluated by using bovine serum albumin, metformin hydrochloride, and indomethacin as model drugs. The results showed that the HPMC-SA hydrogel had good water absorption and degradability, an increased swelling ratio of 55, and a prolonged time for maximum swelling degree of 50 h. Moreover, the hydrogel exhibited higher drug-loading capacity and improvements in the sustained release of bio-macromolecules, demonstrating its potential as a drug carrier for biomedical applications.  相似文献   

11.
Studies of smart and biocompatible hydrogels have resulted in the development of efficient drug-delivery systems controlled by external stimuli. Taking inadequate doses of ketorolac could cause health complications in humans. Therefore, it is necessary the development of a polymeric matrix for controlled drug delivery to extend the release of Ketorolac. In this work, acrylic acid was polymerized using ammonium persulfate as initiator and N,N′-methylenebisacrylamide as a cross-linking agent, and in the presence of chitosan (Chit) and linseed mucilage (LS) biopolymers to obtain a composite of PAAc/LS/Chit hydrogel which was used for adsorption and release of ketorolac. Hydrogel was characterized by cryo-scanning electron microscopy (Cryo-SEM), Fourier transform infrared spectroscopy, and thermogravimetric analysis. The effects of pH on water hydrogel swelling percentage (S), water absorption percentage (W), and ketorolac-releasing kinetics were studied. SEM analysis showed hydrogel pore size pH-depending, with micropore diameters ranging between 5 and 10 nm at acidic pH, while for the hydrogel swollen at pH = 9, bigger pores are observed in the range of 30 to 50 nm. It was observed that S and W increased with the pH of the medium with an S of 608% at a pH of 9 following a Fickian behavior of water diffusion into the hydrogel pore and swelling kinetics represented by a second-order model. Ketorolac kinetic release was well described through the Korsmeyer-Peppas mathematical model, with the release rate increasing with the pH, extending the total release time of drug to 20 h.  相似文献   

12.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   

13.
The demand for the development of new therapies and devices for controlled drug release has been continuously increasing, especially those based on materials sensitives to external stimuli, such as electricity. Therefore, in this work, acrylamide was polymerized in the presence of chitosan (CS), using N,N′-methylenebisacrylamide as cross-linking, followed by immersion in pyrrole aqueous solution and chemical polymerization to obtain an electroactive hydrogel of polyacrylamide/CS/polypyrrole (PA/CS/PPy) (67.5/7.5/25% wt.); this electroactive hydrogel was later used in drug delivery controlled by electricity studies. The synthesized PA/CS/PPy hydrogel was characterized by scanning electron microscopy, FTIR spectroscopy, and thermogravimetric analysis. It was observed that the hydrogel presented pores in the range of 50–200 μm with CS and PPy well incorporated to the cross-linked PA. The hydrogel swelling percentage (S) was determined at different pHs. It was observed that S was independent of pH, with S = 700% and a swelling kinetics described by the Fickian diffusion mechanism at alkaline pH. PA/CS/PPy hydrogel was used to absorb captopril (a drug for hypertension control), and its kinetics release at different applied potentials and pH was studied. Release kinetics were described by the Korsmeyer–Peppas model, while release mechanism was a Case-II transport without current at alkaline pH; under electrical stimuli, the mechanism presented an anomalous transport with ON–OFF profile, increasing the release rate with the applied voltage showing its electroactivity in the captopril release.  相似文献   

14.
The bound water fraction (XBW) of a newly‐ developed pH‐sensitive, biodegradable chitosan‐polyvinyl alcohol (PVA) hydrogel crosslinked with glutaraldehyde (GA) was investigated as a function of the chitosan/PVA molar ratio, GA concentration (CGA), and ionization state. Differential scanning calorimetry (DSC) was used to determine the XBW of the initial hydrogel, and of the hydrogel equilibrated in pH 3 and pH 7 buffers. Changes in XBW during swelling and shrinking of hydrogel were also investigated. In the initial state of hydrogel, XBW increased with increasing PVA concentration (CPVA), without being significantly affected by CGA. In the buffer‐equilibrated hydrogels, XBW decreased with increasing CPVA and decreasing CGA. The amount of bound water based on dry mass (CBW) was substantially higher when the hydrogel was in the ionized (swollen) state compared to its unionized counterpart. This may be due to the association of a large quantity of water molecules with ? NH3+ groups of chitosan when the gel swelled in the acidic environment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3227–3232, 2006  相似文献   

15.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Carboxymethyl chitosan sodium salt (CMCS)/sodium alginate (SA), a pH-sensitive hydrogel composed of CMCS and SA crosslinked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide, has been evaluated in vitro as a potential carrier for protein drug delivery of bovine serum albumin (BSA). The crosslinked structures, pore morphologies, and mechanical properties of the composite CMCS/SA hydrogel at different pH have been characterized by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA). The swelling behavior of the prepared hydrogel was assessed at different pH values, 1.2, 4.0, 6.86, 7.4, and 9.0. The in vitro slow release ability of the CMCS/SA hydrogel was assessed at 37°C and pH 1.2 or pH 7.4 to simulate gastrointestinal and mouth environments in vivo. The efficiency was found to be greater than 90% at pH 7.4. The composite CMCS/SA hydrogel showed no cytotoxic effect toward L-929 cells according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. These findings demonstrate that the composite hydrogel has promising potential for drug delivery. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46911.  相似文献   

17.
In this work, a thermodynamic-based equilibrium-swelling model was proposed to predict the swelling process of neutral/cationic polymers-clay nanocomposite hydrogels sensitive to dual stimuli temperature and pH. Indeed, the new swelling model can estimate the effect of the rigid clay nanoparticles component on swelling behavior of blend nanocomposite hydrogels. The mixing term in model was developed based on lattice theory by considering the effects of solvent-polymers, solvent-clay, and polymer-clay interaction parameters. The influence of the ionic groups of the clay layers and cationic polymer on the swelling was also taken into account in the proposed model. The model was verified by preparation of polyvinyl alcohol/chitosan/montmorillonite intelligent nanocomposite hydrogel by tripolyphosphate crosslinking method followed by freezing–thawing process. It was found that it could give good prediction for the equilibrium swelling of polymer-clay nanocomposite hydrogels in the case of phantom network, especially where the swelling temperature and clay loading level are high and the pH of swelling medium is low. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48797.  相似文献   

18.
Inclusion complex of curcumin with β-cyclodextrin (Cur-β-CD) was prepared using coprecipitation method. Stoichiometric ratio between curcumin and β-cyclodextrin was found to be 1:2 with an association constant of 3.80 × 108 M−2 using Benesi–Hildebrand method. Inclusion complex formation was confirmed by FTIR and DSC analyses. Water solubility of curcumin increased from 0.00122 to 0.721 mg mL−1 with the inclusion complex formation. Release of the inclusion complex from the nanocomposite and conventional poly(N-isopropylacrylamide/sodium alginate hydrogels crosslinked by nanoclay and N,N′-methylenebis(acrylamide) (BIS), respectively, were investigated in simulated gastrointestinal conditions. Swelling ratio and cumulative release were dependent on the hydrogel composition and pH. At pH = 1.2, hydrogels showed the lowest release ratio, but at pH = 6.8 highest swelling ratios were attained. The swelling ratio and cumulative release decreased with increasing the nanoclay content in nanocomposite hydrogels. On the contrary, as the ratio of BIS in the conventional hydrogels increased, the swelling ratio and cumulative release increased. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47554.  相似文献   

19.
Poly(vinyl alcohol)/poly(ethylene glycol) hydrogels containing curcumin as a drug and the various amounts of a montmorillonite nanoclay are prepared using the freezing–thawing method. Nanoclay quantity influence on the physicomechanical properties and the drug release rate of the hydrogel as well as relationship between them is investigated. X-Ray diffraction and Atomic force microscopy analysis reveal the nanoclays have an intercalation structure in the hydrogel, and the hydrogel crystallization decreases with increasing the nanoclay inclusion. From the SEM micrographs observation, it was revealed that due to the presence of the nanoclay in the hydrogel, its porosity decreased. The naonoclay has an amount-depended dual effect on the hydrogel swelling. The swelling mechanism is a normal Fickian diffusion for all the hydrogel samples. Strong physical interactions between the nanoclays and the polymer chains in the nanocomposite hydrogels are evidenced by the rheological studies. These interactions lead to significant reinforcement of the hydrogel tensile strength, intensified by the nanoclay amount. Interestingly, the nanoclays show the capability of accelerating and, also, decelerating the drug release of the hydrogel. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47843.  相似文献   

20.
The current study reports the solvothermal synthesis of amphiphilic chitosan-based semi-interpenetrating (CAT-SIPH) hydrogel for controlled release of an organophosphate pesticide, triazophos. CAT-SIPH is prepared from natural backbone polymer chitosan (CS) and monomer, acrylic acid (AA) employing initiator (K2S2O8), and cross-linker, thiourea (CSN2H4) using solvothermal technique under 7 Psi pressure in an autoclave. The polymerization reaction variables like reaction time, the volume of solvent, concentration of initiator, cross-linker, and monomer are optimized to get the best product yield in terms of percentage grafting. The optimized conditions for solvothermal polymerization reaction carried out for 60 min are solvent volume (10 ml), concentrations of acrylic acid (0.2 mol/L), K2S2O8 (0.45 × 10−2mol/L) and thiourea (1.75 × 10−4 mol/L). The swelling behavior of CAT-SIPH hydrogel synthesized under optimized conditions is studied in the terms of swelling ratio. CAT-SIPH is characterized by Fourier transform infrared spectra (FT-IR), IHNMR, thermal analysis (TA), Zeta potential, and scanning electron microscopy (SEM). The potential of cross-linked hydrogel CAT-SIPH for controlled release of an organophosphate pesticide, Triazophos on to sandy loam soil is assessed. The experimental investigations proved that synthesized hydrogel can be effectively employed as a pesticide carrier for controlled release on to loamy soil as the maximum release (53%) is observed even after 25 days at pH 6 and value get lowered under acidic and basic conditions. The present investigation demonstrated the potential of chitosan-based CAT-SIPH hydrogel as a pH-responsive release vehicle for agrochemicals onto the soil matrix and offers a potential solution for the prevention of surface and groundwater contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号