共查询到20条相似文献,搜索用时 15 毫秒
1.
Anne Mette Frey Selcuk Mert Johannes Due-Hansen Rasmus Fehrmann Claus Hviid Christensen 《Catalysis Letters》2009,128(1-2):1-8
Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5 and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied. 相似文献
2.
Cu-Fe/ZSM-5 catalyst prepared by subsequent ion-exchange showed higher NOx conversion compared with Fe/ZSM-5 or Cu/ZSM-5. Presence of small amount of copper in xCu-yFe/ZSM-5 catalysts was found to be enough to improve the low temperature NOx conversion without significantly affecting the high temperature performance. Co-presence of Cu increases the reducibility of Fe and also increased strong acid sites in Cu-Fe/ZSM-5. However, no correlation between acid site strength and NOx conversion is observed. Higher NOx conversion over Cu-Fe/ZSM-5 can be correlated to the facile reduction of metal species. Thus the redox properties and NOx conversion can be tuned by changing the composition of Cu-Fe/ZSM-5 catalyst. 相似文献
3.
The addition of MoO3 enhanced the activity of CeO2/TiO2 catalyst for the selective reduction of NOx with NH3. The MoO3-promoted CeO2/TiO2 exhibited higher activity than CeO2/TiO2 even in the co-presence of H2O and SO2. This is because the introduction of Mo to the Ce10Ti catalyst can inhibit the adsorption of H2O and SO2 as well as the formation of sulfate species on the catalyst surface, thus alleviating the poisoning effect of H2O and SO2. 相似文献
4.
Wuyuan Liu Zhaoying Wang Ming Sun Jiajian Gao Lifeng Wang Zihan Gao Yingying Xu Xiangyun Zhao Cheng Zhang Lin Yu 《American Institute of Chemical Engineers》2022,68(11):e17834
A series of CeO2 modified Cu-SSZ-13 monolith catalysts were prepared by embedding CeO2 into the washcoat of Cu-SSZ-13 monolith catalyst through solvent combustion method. These CexCu-SSZ-13 catalysts were studied in the selective catalytic reduction (SCR) of NO with NH3, among which the Ce2Cu-SSZ-13 catalyst exhibited the best low-temperature activity, hydrothermal stability, and sulfur resistance. The physicochemical properties of the catalysts were characterized using multiple methods. Results showed that the acidity, redox capacity, and ammonia adsorption capacity significantly enhanced after CeO2 modification, thus leading to the high performance of Ce2Cu-SSZ-13 catalyst. Furthermore, the introduction of CeO2 induced the fast SCR reaction by promoting the oxidation of NO to NO2. Analog calculation suggested that the porous structure generated via solvent combustion in the washcoat effectively increased the diffusion rate of reaction. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFT) analysis showed that Brønsted acid sites were the main active center and the reaction followed Eley–Rideal mechanism. 相似文献
5.
Lei Song Kui Ma Wen Tian Junyi Ji Changjun Liu Siyang Tang Wei Jiang Hairong Yue Bin Liang 《American Institute of Chemical Engineers》2019,65(10):e16684
A novel FeTiSOx catalyst prepared by a simple hydrolysis coprecipitation method was used for the selective catalytic reduction (SCR) of NOx with NH3, which exhibited high catalytic activity (NOx conversion of >97% and N2 selectivity of >95%) and tolerance for both H2O and SO2 at a broad temperature window of ~325–475°C. The characterization results showed that the formation of Fe–O–Ti and Fe–O–S species could significantly enhance the acidic sites of the catalyst, which play an important role in NH3 absorption and their catalytic activity. The Fe3+ ions in the bulk anatase TiO2 could significantly enhance the redox properties for the SCR reaction and suppress the side reaction of NH3 oxidation to NO or N2O. In addition, the reaction mechanism was discussed based on in situ diffuse reflectance infrared Fourier transform spectroscopy measurements and kinetic investigation, indicating that the reaction was dominated by the Eley–Rideal mechanism over the FeTiSOx catalyst. 相似文献
6.
《Ceramics International》2020,46(4):4394-4401
MnOx-CeO2 (denoted as Mn–Ce) nanorod and MnOx-CeO2 nanooctahedra catalysts were synthesized by the hydrothermal method and were used for selective catalytic reduction of NO with NH3. The catalytic performance tests showed that the NO removal efficiency of CeO2 catalysts was obviously improved after loading MnOx. The structure and properties of catalysts had been characterized by SEM、TEM、XRD、BET、XPS、H2-TPR、NH3-TPD and in situ DRIFTS. It was found that Mn–Ce catalyst were of uniform core-shell structure, higher concentrations of Mn4+ and Ce3+, better reducibility, the increase of weak acid sites. The results of in situ DRIFTS indicated that the NH3-SCR reaction should obey the E–R mechanism. Moreover, the promotion effect and mechanism of MnOx doped CeO2 was demonstrated, which improved the catalytic activity of Mn–Ce catalysts. 相似文献
7.
8.
浸渍法制备15% MnOx/5% WO3/TiO2低温脱硝催化剂,利用原位傅里叶变换红外(in situ FT-IR)设计包括多种吸附反应以及不同预处理方式的微观暂态试验与微观稳态试验,研究其NH3-SCR脱硝反应机理,并推测反应路径。结果表明,催化剂的NH3-SCR反应主要以Eley-Rideal机理方式进行,仅在一定温度条件下可以看到Langmuir-Hinshclwood反应路径。催化剂表面Lewis酸位的NH3吸附是还原剂的主要来源,Brønsted酸位吸附的NH4+随温度上升参与反应的比例略有提高。NH3的吸附活化是整个反应的控制步骤,吸附态NH3更易与NO2发生反应,NO与催化剂表面的相互作用明显弱于NO2。NO会在催化剂表面氧化活性中心形成大量双齿配位型硝酸盐,阻碍NH3的吸附和活化,O2存在条件下促进NH3-SCR反应进行,阻止NO在催化剂表面形成双齿硝酸盐。NO与NH3在催化剂表面存在吸附竞争,NO的吸附作用强于NH3,温度达到100℃后吸附的NH3方可大量活化并与NOx发生进一步反应。 相似文献
9.
针对柴油机运行工况特点及柴油机尾气成分特点,以工业纯锐钛型二氧化钛、偏钒酸铵、偏钨酸铵、钼酸铵为主要原料制备了颗粒状V2O5-WO3-MoO3/TiO2催化剂,以Lister Petter TR1重型直喷式单缸柴油机为依托搭建试验台,研究了在真实柴油机尾气环境下催化剂的脱硝性能。结果表明,柴油机负载增大,催化剂脱硝活性呈现下降趋势。1800 r·min-1时,脱硝活性最大值87.1%在负载25%、反应温度380℃、空速20000 h-1、氨氮比1.0处取得。柴油机负载不同,导致催化剂活性温度窗口(脱硝活性>70%)发生较大变化,与负载25%相比,负载50%活性温度窗口减小约60℃。增大柴油机负载可以提高NH3/N2O反应起始温度,但是同时会导致高温区间(>400℃)N2O生成量增大。 相似文献
10.
11.
抗硫性能是评价脱硝过程中催化剂性能的关键指标,研究SO2对催化剂理化特性的影响对催化剂脱硝应用具有重要意义。通过焙烧处理白云鄂博稀土精矿得到稀土精矿催化剂,利用催化剂抗硫性能实验台,结合SEM、BET、XRD和FT-IR,分析了O2、NH3、NO气氛下SO2在催化剂表面的吸附及不同SO2浓度对催化剂催化脱硝性能的影响。结果表明, SO2对稀土精矿催化剂脱硝性能有显著的促进作用,300℃时,NO转化率从28%提高至50%,350℃时,NO转化率从42%提高至75%; SEM、BET和XRD结果表明催化剂抗硫性能测试前后的物理结构和化学组成基本保持不变,稀土精矿催化剂具有较好的抗硫性能;FT-IR结果证实SO2的吸附使稀土精矿催化剂表面B酸性位点增多,催化剂对NH3的吸附能力增强,因此有利于提高催化剂活性。研究结果可为白云鄂博稀土精矿催化剂NH3-SCR脱硝应用过程中抗硫性能提供有价值的基础数据参考。 相似文献
12.
摘要:以SSZ-39为载体,采用离子交换法制备不同铜锰物质的量比的Cu-Mn/SSZ-39分子筛催化剂,并考察其在以NH3为还原剂的选择性催化还原NO反应(NH3-SCR)中的脱硝活性。通过XRD、SEM、N2吸脱附、NH3-TPD、H2-TPR、XPS、ICP等对催化剂的结构、形貌、表面酸性等进行表征。结果表明,Cu2 提供主要的反应活性位,使催化剂具有良好脱硝活性和N2选择性;Mn2 /3 交换提 高了催化剂的表面酸性,特别是增加了弱Lewis酸的含量;Cu2 、Mn2 /3 双金属交换的Cu-Mn/SSZ-39催化剂具有良好的低温脱硝活性和水热稳定性。当Cu与Mn的物质的量比为1:0.6时,Cu-Mn(0.6)/SSZ-39具有最低的起燃温度(T50为125 ℃),在184~433 ℃的宽温度范围内转化率达到90%以上,并在450 ℃内保持90%以上的N2选择性。水热老化后的Cu-Mn/SSZ-39-A基本保持了原有的晶型、形貌和脱硝活性,体现了良好的水热稳定性。 相似文献
13.
14.
15.
采用选择催化还原技术(SCR)有效脱除NOx的关键在于高效催化剂,而催化剂脱硝性能主要取决于催化剂的物理化学性质,催化剂织构特性的差异对于催化剂低温活性及抗中毒性能具有重要的影响。本文综述了近年来通过改性催化剂织构强化催化剂脱硝性能的研究进展,重点阐述了通过拓展催化剂载体比表面积及提高活性物质的表面分散性等织构改性来优化催化剂微观形态,由此提高催化剂低温脱硝性能;同时介绍了改性催化剂织构的常用方法;并总结了近年来国内外学者对特殊结构催化剂的研究,众多文献表明催化剂的特殊结构和形态可以显著改善催化剂的酸性和活性位性质,提高催化剂的脱硝性能和抗中毒性能。在此基础上展望了未来催化剂织构改性的研究方向;寻求更合适的物理化学方法应用到催化剂织构改性、进一步采用仿真模拟技术用于催化剂研究以及继续开发研究特殊结构催化剂并应用到工程实践中。 相似文献
16.
17.
18.
Woojoon Cha Eunseuk Park Sungmin Chin Seong-Taek Yun Jongsoo Jurng 《Journal of Porous Materials》2013,20(5):1069-1074
In this study, the aim was to evaluate the effect of calcinations temperature on the catalytic activity and chemical composition of V2O5/TiO2. We prepared V2O5-loaded CVC-TiO2 catalysts by a combination of chemical vapor condensation (CVC) and impregnation method at different calcination temperatures. These catalysts were analyzed for their ability to catalyze NH3-based selective catalytic reduction of NOx. Compared with V2O5 loaded P25-TiO2 (commercial). V2O5/CVC-TiO2 catalysts calcined above 200 °C exhibited better performance towards NOx conversion than that by a commercial catalyst prepared using P25-TiO2 (calcined at 500 °C). In addition, the NOx conversion rate obtained with the sample calcined at 500 °C gave the best result (90 %) at a reaction temperature of 200 °C. From the XPS results, we observed that the V4+/5+ ratio was well balanced when the V2O5 loaded CVC-TiO2 sample was calcined at 500 ºC. 相似文献
19.
Ce(SO4)2 is formed on SO2 poisoned Pd/CeO2 catalyst, inducing a decrease in catalytic activity. And the activity just partially recovers after regeneration although Ce(SO4)2 is eliminated. The BET surface area decreases severely and the size of both Pd and CeO2 crystallites increases after regeneration. This is due to the decrease of PdO–CeO2 interaction by Ce(SO4)2 on sulfated samples and the hydrothermal effect of regeneration process. 相似文献
20.
A novel MnOx-CeO2 catalyst with shell-in-shell microsphere structure was successfully prepared by a one-step hydrothermal method for the first time. The obtained catalyst was characterized by SEM, TEM, XRD, N2 adsorption and desorption, XPS, H2-TPR and NH3-TPD in detail, and its catalytic activity was investigated by selective catalytic reduction of NOx with NH3. The results showed that the MnOx-CeO2 microsphere catalyst presented high catalytic activity at low temperatures (lower than 210 °C), which was much superior to the counterpart MnOx-CeO2 catalyst without shell-in-shell microsphere structure prepared by co-precipitation method. 相似文献