共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
设计了一种利用单个电感实现双路输出的低电压降压型(Btlck)DG-DC变换器,提供200mA(1.8V)和400mA(1.2V)的带负载能力.引入平均电流控制模式,并采用了一种无损电流检测的方法.轻负载时电路工作在非连续电流模式(DCM)下.实现了片上补偿和片上软启动.采用TSMC 0.25grn CMOS混合信号工艺,版图面积2.2mm×2.2mm. 相似文献
4.
5.
6.
7.
一种恒压输出的DC-DC升压电路设计 总被引:3,自引:0,他引:3
针对DC-DC升压器存在效率低,纹波电压较大,输出电压不稳定等问题,文中开发和设计了一种具有恒定输出电压的DC-DC升压转换器的方法。通过升压电路和电压反馈技术,将波动的输入电压变成恒定的直流电压输出。该设计通过将转换器的输出电压与参考电压相比较,两者的差值会产生一个PWM信号控制升压器的通断时间,从而达到恒定电压输出。仿真结果显示,该实验电路能在频率为20 kHz的连续导通模式中工作,产生24 V的恒定输出电压,输出功率为100 W。 相似文献
8.
建立了单电感多路输出(SIMO) DC-DC转换器的数学模型,通过Matlab验证了SIMO模型的可行性.为解决SIMO控制电路复杂以及静态工作电流大的问题,提出在电流域设计SIMO控制器的方法.该方法将SIMO多路输出电压反馈信号转换为电流信号,与基准电流信号和电感电流信号一并输入多环路PWM控制器,PWM控制器在电流域完成需要的运算及环路频率补偿.仿真结果表明,该算法可行,电路设计方法简洁,在0.13 μm CMOS工艺下,三通道SIMO的面积为0.76 mm2,静态电流为110 μA,驱动能力为200 mA. 相似文献
9.
为了提高电池能量利用率,延长便携式电子设备的电池使用时间,提出一种级联4开关降压-升压型DC-DC转换器.该电路采用多模式工作方式,能根据输入和输出电压的具体关系和不同的负载条件采取相应的控制策略,以提高转换器的效率;在电池电压的整个波动范围内,提供稳定的电压输出.整个系统使用1.5μm BCD(Bipolar-CMOS-DMOS)工艺设计实现. 相似文献
10.
设计了一种升压型恒流LED驱动芯片,驱动电流可由外接电阻从15~300 mA任意调整,输入电压为2.8~5.5 V,输出电压最高可达38 V.设计固定开关频率为1 MHz,应用时只需很小的外接电感即可.相对于其他驱动器电路,该驱动器增加了过压保护电路,无需外接稳压二极管,降低了应用成本.采用上华0.5μm BCD工艺完成芯片的设计,传输效率高达94%. 相似文献
11.
An integrated single-inductor dual-output (SIDO) switching DC-DC converter is presented. The outputs are specified with 1.2 V/400 mA and 1.8 V/200 mA. A decoupling small signal model is proposed to analyze the multi-loop system and to design the on-chip compensators. An average current control mode is introduced with lossless, continuous current detection. The converter has been fabricated in a 0.25μm 2P4M CMOS process. The power efficiency is 86% at a total output power of 840 mW while the output ripples are about 40 mV at an oscillator frequency of 600 kHz. 相似文献
12.
are about 40 mV at an oscillator frequency of 600 kHz. 相似文献
13.
14.
An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output(SIDO) buck converter in pseudo-continuous conduction mode(PCCM) with a self-adaptive freewheeling current level(SFCL) is presented.Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter.Moreover,an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers.Instead of keeping it as a constant value,the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time.To verify the feasibility of the proposed controller,an SIDO buck converter with two regulated output voltages,1.8 V and 3.3 V,is designed and fabricated in HEJIAN 0.35 m CMOS process.Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 s while the cross-regulation is reduced to 0.057 mV/mA,when its first load changes from 50 to 100 mA. 相似文献
15.
16.
We consider the fuzzy controller design problem for a boost DC-DC converter. We design a fuzzy PI-type controller based on the common control engineering knowledge that the transient control performance can be improved if we increase the P and I gains as the error grows. Using Kharitonov’s theorem, we derive a closed-loop control system stability condition which can be used to tune the fuzzy PI control parameters. Finally, we give simulation and experimental results to show the effectiveness and practicality of the proposed method. 相似文献
17.
This article presents a control strategy based on simple digital pulse-width modulation (DPWM) and pulse-skip modulation (PSM) for a DC-DC boost converter, to drive a luminance-regulated white light emitting diodes (WLEDs). The presented control strategy not only retains most of the advantages and flexibilities of traditional digital PWM, but also reduces complexity and cost. Based on analyzing the principle of the presented control strategy, the white light emitting diode (WLED) driver is designed and simulated using the 0.6 (m CMOS process. Simulation results of the boost converter show that the power efficiency is above 76% for a full load, with a peak efficiency of 88% when supply voltage varies from 2.7 V to 5.5 V. The control strategy overcomes low efficiency for PWM mode with light load. 相似文献