首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm2/V-s in both electrons and holes.  相似文献   

2.
Donor-acceptor polymers with narrow bandgaps are promising materials for bulk heterojunction solar cells and high-mobility field-effect transistors. They also emit light in the near-infrared. Here we investigate and compare the photoluminescence and electroluminescence properties of different narrow bandgap (<1.5 eV) donor-acceptor polymers with diketopyrrolopyrrole (DPP), isoindigo (IGT) and benzodipyrrolidone (BPT) cores, respectively. All of them show near-infrared photoluminescence quantum yields of 0.03–0.09% that decrease with decreasing bandgap. Bottom-contact/top-gate field-effect transistors show ambipolar charge transport with hole and electron mobilities between 0.02 and 0.7 cm2 V−1 s−1 and near-infrared electroluminescence. Their external quantum efficiencies reach up to 0.001%. The effect of polaron quenching and other reasons for the low electroluminescence efficiency of these high mobility polymers are investigated.  相似文献   

3.
The synthesis of a new thieno[3,2‐b]thiophene isoindigo (iITT) based monomer unit, and its subsequent incorporation into a series of alternating copolymers is reported. Copolymerisation with benzothiadiazole, bithiophene and thiophene comonomer units by palladium catalysed cross coupling gives three new narrow band gap semiconducting polymers for OFET applications. Extending the fused nature of the isoindigo core serves to further enhance molecular orbital overlap along the polymer backbones and facilitate good charge transport characteristics thus demonstrating the potential of extending the fused ring system that is attached to the isoindigo core. When used as the semiconducting channel in top‐gate/bottom‐contact OFET devices, good ambipolar properties are observed, with hole and electron mobilities up to 0.4 cm2/Vs and 0.7 cm2/Vs respectively. The three new polymers show good stability, with high temperature annealing showing an increase in the crystallinity of the polymers which corresponds directly to charge carrier mobility improvement as shown by X‐ray diffraction, atomic force microscopy and photothermal deflection spectroscopy.  相似文献   

4.
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ~0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels.  相似文献   

5.
Ambipolar organic field-effect transistors (OFETs) based on a bilayer structure of highly crystalline small molecules, n-type α,ω-diperfluorohexylquaterthiophene (DFH-4T) and p-type dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT), are investigated. By employing DFH-4T/DNTT as the bottom/top layers and appropriate high work function (WF) electrodes in a bottom-gate, top-contact configuration, the superior ambipolar characteristics with matched electron and hole mobilities of 1–1.1 cm2 V−1 s−1 are achieved. Intriguingly, this high-performance device exhibits a unique feature of an extremely rough, nonplanar heterojunction in the DFH-4T/DNTT combination and a large electron injection barrier from the high WF electrodes to DFH-4T, suggesting some underlying mechanisms for the effective charge transport and injection. The electrical and structural analyses reveal that the crystal packing of the bottom DFH-4T layer supports the growth of a high-quality DNTT crystal network for high-mobility hole transport upon the nonplanar heterojunction, and also enables the formation of an enlarged organic/metal contact surface for efficient electron injection from the high WF electrodes, as the key attributes leading to an overall excellent ambipolar behavior. The effect of intrinsic charge accumulation at the heterojunction interface on the ambipolar conduction is also discussed. Furthermore, a complementary-like inverter constructed with two DFH-4T/DNTT ambipolar OFETs is demonstrated, which shows a gain of 30.  相似文献   

6.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

7.
The question of designing high electron mobility polymers by increasing the planarization using diffusive nonbonding heteroatom interactions in diketopyrrolopyrrole polymers is addressed in this. For this, three different diketopyrrolo[3,4‐c]pyrrole (DPP) derivatives with thienyl‐, 2‐pyridinyl‐, and phenyl‐flanked cores are copolymerized with an electron‐rich thiophene unit as well as an electron‐deficient 3,4‐difluorothiophene unit as comonomer to obtain diverse polymeric DPPs which vary systematically in their structures. The crystallinity differs significantly with clear trends on varying both flanking unit and comonomer. The optical gap and energy levels depend more on the nature of the flanking aryl units rather than on fluorination. Additionally, the charge transport properties are compared using different methods to differentiate between interface or orientation effects and bulk charge carrier transport. In organic field effect transistor devices with very high electron as well as hole mobilities (up to 0.6 cm2 V?1 s?1) are obtained and fluorination leads to a more pronounced n‐type nature in all polymers, resulting in ambipolar behavior in otherwise p‐type materials. In contrast, space‐charge limited current measurements show a strong influence of the flanking units only on electron mobilities. Especially, the elegant synthetic strategy of combining pyridyl flanking units with difluorothiophene as the comonomer culminates in a record bulk electron mobility of 4.3 × 10?3 cm2 V?1 s?1 in polymers.  相似文献   

8.
Conjugated polymer semiconductors P1 and P2 with bithienopyrroledione (bi‐TPD) as acceptor unit are synthesized. Their transistor and photovoltaic performances are investigated. Both polymers display high and balanced ambipolar transport behaviors in thin‐film transistors. P1‐ based devices show an electron mobility of 1.02 cm2 V?1 s?1 and a hole mobility of 0.33 cm2 V?1 s?1, one of the highest performance reported for ambipolar polymer transistors. The electron and hole mobilities of P2 transistors are 0.36 and 0.16 cm2 V?1 s?1, respectively. The solar cells with PC71BM as the electron acceptor and P1/P2 as the donor exhibit a high V oc about 1.0 V, and a power conversion efficiency of 6.46% is observed for P1‐ based devices without any additives and/or post treatment. The high performance of P1 and P2 is attributed to their crystalline films and short π–π stacking distance (<3.5 Å). These results demonstrate (1) bi‐TPD is an excellent versatile electron‐deficient unit for polymer semiconductors and (2) bi‐TPD‐based polymer semiconductors have potential applications in organic transistors and organic solar cells.  相似文献   

9.
Four soluble dialkylated tetrathienoacene ( TTAR) ‐based small molecular semiconductors featuring the combination of a TTAR central core, π‐conjugated spacers comprising bithiophene ( bT ) or thiophene ( T ), and with/without cyanoacrylate ( CA ) end‐capping moieties are synthesized and characterized. The molecule DbT‐TTAR exhibits a promising hole mobility up to 0.36 cm2 V?1 s?1 due to the enhanced crystallinity of the microribbon‐like films. Binary blends of the p‐type DbT‐TTAR and the n‐type dicyanomethylene substituted dithienothiophene‐quinoid ( DTTQ‐11 ) are investigated in terms of film morphology, microstructure, and organic field‐effect transistor (OFET) performance. The data indicate that as the DbT‐TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron‐only) to ambipolar and then back to unipolar (hole‐only). With a 1:1 weight ratio of DbT‐TTAR DTTQ‐11 in the blend, well‐defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm2 V?1 s?1, respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high‐performance solution‐processable OFETs.  相似文献   

10.
仪明东  张宁  解令海  黄维 《半导体学报》2015,36(10):104001-6
在本文中,我们利用钛青铜(CuPc)和氟化钛青铜(F16CuPc)作为空穴传输层和电子传输层的制备了具有异质结结构的有机场效应晶体管(OFETs)。与单层的F16CuPc晶体管相比,异质结结构的晶体管的电子迁移率从3.1×10-3cm2/Vs提高至8.7×10-3cm2/vs,然而,空穴的传输行为却没有被观测到。为了提高空穴的注入能力,我们利用MoO3对源-漏电极进行了修饰,有效地改善了空穴注入。并进一步证实了MoO3的引入使得器件的接触电阻变小,平衡了电子和空穴的注入,从而最终实现了器件的双极性传输。  相似文献   

11.
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.  相似文献   

12.
The two small molecules, quinoidal bithiophene (QBT) and quinoidal biselenophene (QBS), are designed based on a quinoid structure, and synthesized via a facile synthetic route. These quinoidal molecules have a reduced band gap and an amphoteric redox behavior, which is caused by an extended delocalization. Due to such properties, organic field‐effect transistors based on QBT and QBS have shown balanced ambipolar characteristics. After thermal annealing, the performances of the devices are enhanced by an increase in crystallinity. The field‐effect hole and electron mobilities are measured to be 0.031 cm2 V?1 s?1 and 0.005 cm2 V?1 s?1 for QBT, and 0.055 cm2 V?1 s?1 and 0.021 cm2 V?1 s?1 for QBS, respectively. In addition, we investigate the effect of chalcogen atoms (S and Se) on the molecular properties. The optical, electrochemical properties and electronic structures are mainly dominated by the quinoidal structure, whereas molecular properties are scarcely affected by either type of chalcogen atom. The main effect of the chalcogen atoms is ascribed to the difference of crystallinity. Due to a strong intermolecular interaction of the selenophene, QBS exhibits a higher degree of crystallinity, which leads to an enhancement of both hole and electron mobilities. Consequently, these types of quinoidal molecules are found to be promising for use as ambipolar semiconductors.  相似文献   

13.
We have designed and investigated electrical and optical properties of solution-processed organic field-effect transistors (OFETs) based on conjugated polymer PFO and perovskite –cesium lead halide nanocrystals (CsPbI3) composite films. It was shown that OFETs based on PFO:CsPbI3 films exhibit current-voltage (I-V) characteristics of OFETs with dominant hole transport and saturation current behavior at temperatures 200–300 K. It was found that PFO:CsPbI3 OFETs have a negligible hysteresis of output and transfer characteristics especially at temperatures below 250 K. The values of the hole mobility estimated from I-Vs of PFO:CsPbI3 OFETs were found to be ∼2.4 10−1 cm2/Vs and ∼1.9 10−1 cm2/Vs in saturation and low fields regimes respectively at 300 K; the hole mobility dropped down to ∼6 10−3 cm2/Vs and 2.8 10−3 cm2/Vs respectively at 200 K, and then down to 5.5 10−5 cm2/Vs at 100 K (in low field regime), which is characteristic of hopping conduction. The effect of sensitivity to light and light-emitting effect were found under application of negative source-drain and gate pulse voltages to PFO:CsPbI3 OFETs at 300 K. The mechanism of charge carrier transport in OFETs based on PFO:CsPbI3 hybrid films is discussed.  相似文献   

14.
In this work, we explored the capacity of π-conjugated thiopheno-azomethines in the form of thin films for use in organic electronic applications. The charge-carrier transport properties of the π-conjugated thiopheno-azomethines were obtained in field-effect transistor configuration after the characterization of the film forming properties by fluorescence hyperspectral imaging and atomic force microscopy. We observed a semiconducting behavior for the azomethines investigated, being an oligomer thiophene triad, consisting of two azomethine bonds, and its polymer counterpart, consisting of about 15 azomethines bonds. The charge transport properties of an analogous thiophene vinylene triad were also examined for validating the mobility measurements, because such compounds are known to have hole transport properties. The azomethine triad was found to have a hole mobility of 3 × 10−5 cm2/Vs.  相似文献   

15.
A new thieno[3,2-b]thiophenediketopyrrolopyrrole-benzo[1,2-b:4,5-b′]dithiophene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10−3 cm2 V−1 s−1 and 10−5 cm2 V−1 s−1, respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno[3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination.  相似文献   

16.
Low-temperature mobilities in InAs-AlSb quantum wells depend sensitively on the buffer layer structures. Reflection high energy electron diffraction and x-ray diffraction show that the highest crystalline quality and best InAs transport properties are obtained by a buffer layer sequence GaAs → AlAs → AlSb → GaSb, with a final GaSb layer thickness of at least 1 μm. Using the improved buffer scheme, mobilities exceeding 600,000 cm2/Vs at 10 K are routinely obtained. Modulation δ-doping with tellurium has yielded electron sheet concentrations up to 8 × 1012 cm−2 while maintaining mobilities approaching 100,000 cm2/Vs at low temperatures.  相似文献   

17.
As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] ( PDTDPP‐alt‐BTZ ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (?e = 0.09 cm2V?1s?1) and holes (?h = 0.1 cm2V?1s?1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ~35 that is much higher than usually obtained values for unipolar logic.  相似文献   

18.
Ambipolar thin‐film transistors based on a series of air‐stable, solution‐processed blends of an n‐type polymer poly(benzobisimidazobenzophenanthroline) (BBL) and a p‐type small molecule, copper phthalocyanine (CuPc) are demonstrated, where all fabrication and measurements are performed under ambient conditions. The hole mobilities are in the range of 6.0 × 10–6 to 2.0 × 10–4 cm2 V–1 s–1 and electron mobilities are in the range of 2.0 × 10–6 to 3.0 × 10–5 cm2 V–1 s–1, depending on the blend composition. UV‐vis spectroscopy and electron diffraction show crystallization of CuPc in the metastable α‐crystal form within the semicrystalline BBL matrix. These CuPc domains develop into elongated ribbon‐like crystalline nanostructures when the blend films are processed in methanol, but not when they are processed in water. On methylene chloride vapor annealing of the blend films, a phase transformation of CuPc from the α‐form to the β‐form is observed, as shown by optical absorption spectroscopy and electron diffraction. Ambipolar charge transport is only observed in the blend films where CuPc crystallized in the elongated ribbon‐like nanostructures (α‐form). Ambipolar behavior is not observed with CuPc in the β‐polymorph. Unipolar hole mobilities as high as 2.0 × 10–3 cm2 V–1 s–1 are observed in these solution‐processed blend field‐effect transistors (FETs) on prolonged treatment in methanol, comparable to previously reported hole mobilities in thermally evaporated CuPc FETs. These results show that ambipolar charge transport and carrier mobilities in multicomponent organic semiconductors are intricately related to the phase‐separated nanoscale and crystalline morphology.  相似文献   

19.
A novel acceptor building block, 3,7-bis((E)-2-oxoindolin-3-ylidene)-3,7-dihydrobenzo[1,2-b:4,5-b′]dithiophene-2,6-dione (IBDT), is developed to construct a donor-acceptor polymer PIBDTBT-40. This polymer has favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for balanced ambipolar charge transport. Organic thin film transistors (OTFTs) based on this polymer shows well-balanced ambipolar characteristics with electron mobility of 0.14 cm2 V−1 s−1 and hole mobility of 0.10 cm2 V−1 s−1 in bottom-gate bottom-contact devices. This polymer is a promising semiconductor for solution processable organic electronics such as CMOS-like logic circuits.  相似文献   

20.
Considering there is growing interest in the superior charge transport in the (E)‐2‐(2‐(thiophen‐2‐yl)‐vinyl)thiophene (TVT)‐based polymer family, an essential step forward is to provide a deep and comprehensive understanding of the structure–property relationships with their polymer analogs. Herein, a carefully chosen set of DPP‐TVT‐n polymers are reported here, involving TVT and diketopyrrolopyrrole (DPP) units that are constructed in combination with varying thiophene content in the repeat units, where n is the number of thiophene spacer units. Their OFET characteristics demonstrate ambipolar behavior; in particular, with DPP‐TVT‐0 a nearly balanced hole and electron transport are observed. Interestingly, the majority of the charge‐transport properties changed from ambipolar to p‐type dominant, together with the enhanced hole mobilities, as the electron‐donating thiophene spacers are introduced. Although both the lamellar d‐spacings and π‐stacking distances of DPP‐TVT‐n decreased with as the number of thiophene spacers increased, DPP‐TVT‐1 clearly shows the highest hole mobility (up to 2.96 cm2 V?1 s?1) owing to the unique structural conformations derived from its smaller paracrystalline distortion parameter and narrower plane distribution relative to the others. These in‐depth studies should uncover the underlying structure–property relationships in a relevant class of TVT‐like semiconductors, shedding light on the future design of top‐performing semiconducting polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号