首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel spiro-based host materials, namely 3-(9,9′-spirobi[fluoren]-6-yl)-9-phenyl-9H-carbazole (SF3Cz1) and 9-(3-(9,9′-spirobi[fluoren]-6-yl)phenyl)-9H-carbazole (SF3Cz2) were designed and synthesized. Due to the meta-linkage of spirobifluorene backbone, both SF3Cz1 and SF3Cz2 possess triplet energies over 2.70 eV, indicating they could serve as suitable hosts for blue and even white phosphorescent organic light-emitting diodes (PHOLEDs). The fabricated bis(4,6-(difluorophenyl)-pyridinato -N,C′)picolinate (FIrpic) based PHOLEDs hosted by SF3Cz1 and SF3Cz2 exhibited excellent performance with maximum external quantum efficiencies (EQEs) of 18.1% and 19.7%, respectively. Two-color warm white PHOLEDs fabricated by utilizing SF3Cz1 and SF3Cz2 as hosts also achieved high EQEs and low efficiency roll-offs. The results demonstrate that SF3Cz1 and SF3Cz2 are promising hosts for blue and white PHOLEDs.  相似文献   

2.
A series of simplified trilayer phosphorescent organic light-emitting diodes (PHOLEDs) with high efficiency and little efficiency roll-off based on a bipolar iridium emitter Iridium(III) bis(2-phenylpyridinato)-N,N′-diisopropyl-diisopropyl-guanidinate (ppy)2Ir(dipig) has been demonstrated. They are dominated by the efficient direct-exciton-formation mechanism and show gratifying concentration-insensitive and low-driving-voltage features. In particular, very high and stable electroluminescence (EL) efficiencies (maximum power efficiency and external quantum efficiency >98 lm W?1 and 25% respectively, and external quantum efficiency >20% over a wide luminance range of 1–15,000 cd m?2) are achieved in the PHOLEDs based on emitting layers (EMLs) consisting of (ppy)2Ir(dipig) codeposited with common host CBP in an easily controlled doping concentration range (15–30 wt%). The EL performance of the PHOLEDs is comparable to the highest PHOLEDs reported in scientific literature.  相似文献   

3.
The authors report a small molecule host of 2,7-bis(diphenylphosphoryl)-9-[4-(N,N-diphenylamino)phenyl]-9-phenylfluorene (POAPF) doped with 8 wt% iridium(III)-bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolinate (FIrpic) for use in efficient and single-layer blue phosphorescent organic light-emitting diodes (PHOLEDs) exhibiting a maximum external quantum efficiency of ∼20.3% at brightness of 100 cd/m2. The high performance of such single layer PHOLEDs is attributed to the POAPF host’s high morphological stability, suitable triplet energy level, and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, thus reducing the triplet-triplet annihilation and resulting in a slight efficiency roll off of 0.5% from the brightness of 1 and 1000 cd/m2. This work also systematically investigated the arrangement of the POAPF:FIrpic recombination zone for optimizing the performance of the single layer PHOLED.  相似文献   

4.
Two structural isomeric host materials, 9-(4-(dibenzo[b,d]thiophen-4-yl)phenyl)-9H-pyrido-[2,3-b]indole (pDBTCb) and 9-(3-(dibenzo[b,d]thiophen-4-yl)phenyl)-9H-pyrido-[2,3-b]indole (mDBTCb), were designed and synthesized, incorporating dibenzothiophene (DBT) and α-carboline moieties via phenyl linkages and their device performances of phosphorescent organic light-emitting diodes (PHOLEDs) were also investigated. The different linkages between DBT and α-carboline on central phenyl spacer play an important role in the structure–property correlations. Although their photophysical properties were similar regardless of different linkage positions, the bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III)-based blue device with mDBTCb, which adopted a meta-linkage showed a significantly higher maximum quantum efficiency of 19.8% as compared to its para-linkage analog, pDBTCb (16.2%). A high quantum efficiency of 19.8% and only ca. 10% reduction of quantum efficiency at 1000 cd/m2 were demonstrated from the blue PHOLEDs with the mDBTCb host material.  相似文献   

5.
Phosphorescent organic light-emitting devices (PHOLEDs) with high efficiency and low efficiency roll-off were fabricated. The emissive layer was composed of a thermally activated delayed fluorescence (TADF) material 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN) as host and an orange iridium complex bis(4-tert-butyl-2-phenylbenzothiozolato-N,C2′)iridium(III)(acetylacetonate) [(tbt)2Ir(acac)] as dopant. At a low dopant concentration of 1 wt%, a PHOLED without light extraction optimization achieved a maximum power efficiency of 42.1 lm/W, a luminance efficiency of 77.9 cd/A and an external quantum efficiency (EQE) of 26.8%, respectively. Meanwhile, the EQE maintained 26.6% at 1000 cd/m2 and 25.8% at 5000 cd/m2, respectively. Moreover, a critical current density of 300 mA/cm2 was realized, indicating significantly improved efficiency roll-off. The efficient utilization of triplet excitons on 2CzPN for phosphorescence via reverse inter-system crossing of 2CzPN followed by Fӧrster resonance energy transfer from 2CzPN to (tbt)2Ir(acac) is responsible for the superior performance.  相似文献   

6.
A novel aminoborane-based host material, 9-(dimesitylboryl)-9′-phenyl-9H, 9′H-3,3′-bicarbazole (BCzBMes) was developed for blue and white phosphorescent OLEDs (PHOLEDs). The thermal, photophysical and electrochemical properties were systematically investigated. BCzBMes not only has a high triplet energy but also shows a bipolar behavior. To validate the superior properties of BCzBMes, blue and white PHOLEDs were fabricated using BCzBMes as a bipolar host material. A blue PHOLED containing Bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrPic) as a dopant exhibited excellent performance with a maximum external quantum efficiency (EQE) of 16.7%. In particular, the blue PHOLED exhibited an extraordinary low efficiency roll-off of 10.1% at a brightness of 5000 cd/m2. Meanwhile, an all-phosphor near-white device hosted by BCzBMes was also fabricated, and a high EQE of 18.8% was achieved. This excellent performance suggests that BCzBMes is a potential bipolar host material for the PHOLEDs.  相似文献   

7.
Orange‐emitting phosphorescent organic light‐emitting diodes (PHOLEDs) are drawing more and more attention; however, high‐performance hosts designed for orange PHOLEDs are rare. Here, four indolocarbazole/1, 3, 5‐triazine hybrids are synthesized to optimize the singlet and triplet energies, as well as transporting properties, for ideal orange PHOLEDs. By introducing moieties with different electronegativity, a graded reduction of the singlet and triplet energies is achieved, resulting in minimum injection barrier and minimum energy loss. Besides, the charge transporting abilities are also tuned to be balanced on the basis of the bipolar features of those materials. The optimized orange PHOLED shows a maximum external quantum efficiency (EQE) of 24.5% and a power efficiency of 64 lm W–1, both of which are among the best values for orange PHOLEDs. What is more, the efficiency roll‐off is extremely small, with an EQE of 24.4% at 1000 cd m–2 and 23.8% at 10 000 cd m–2, respectively, which is the lowest efficiency roll‐off for orange PHOLEDs to date, resulting in the highest EQE for orange PHOLEDs when the luminance is above 1000 cd m–2. Besides the balanced charges, the small roll‐off is also attributed to the wide recombination zone resulting from the bipolar features of the hosts.  相似文献   

8.
Improved power efficiency in blue phosphorescent organic light-emitting diodes (PHOLEDs) was demonstrated by using new high triplet energy hole-transport materials based on the diphenylmethyl linkage. Two high triplet energy hole-transport materials with diphenylamine or ditolyamine moieties linked through a diphenylmethyl linkage, 4,4′-(diphenylmethylene)bis(N,N-diphenylaniline) (TCBPA) and 4,4′-(diphenylmethylene)bis(N,N-di-p-tolylaniline), were synthesized and evaluated as hole-transport materials for blue PHOLEDs. The power efficiency of TCBPA was superior to that of standard 1,1-bis[4-[N,N′-di(p-tolyl)amino]phenyl]cyclohexane.  相似文献   

9.
Four novel bipolar hosts, namely 9,9′-(2-(4,6-diphenylpyrimidin-2-yl)-1,3-phenylene)bis(9H-carbazole) (2CzPm), 9,9′-(2-(4,6-diphenylpyrimidin-2-yl)-1,3-phenylene)bis(3,6-di-tert-butyl-9H-carbazole) (2TCzPm), 5,5′-(2-(4,6-diphenylpyrimidin-2-yl)-1,3-phenylene)bis(5H-benzofuro[3,2-c]carbazole) (2BFCzPm) and 5,5′-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(5H-benzofuro[3,2-c]carbazole) (2BFCzTrz) were designed and synthesized with diphenylpyrimidine and diphenyltriazine as electron-transporting units and carbazole derivatives as hole-transporting motifs for the application in blue phosphorescent organic light-emitting diodes (PHOLEDs). These electron-accepting and -donating functional groups were attached to the central phenylene bridge in an ortho-substituted fashion, which led to high triplet energies (2.97–3.00 eV) and wide bandgap (3.43–3.55 eV). The effect of modulation of electron-accepting and donating groups on the photophysical properties, frontier orbital energy levels, charge carrier transport properties and device performance of these four hosts has been investigated. 2BFCzPm and 2BFCzTrz featured with large conjugation system exhibited high thermal stability as compared to 2CzPm and 2TCzPm. The bis[2-(4,6-difluorophenyl)-pyridinato-C2,N](picolinato)iridium(III) (FIrpic) based blue PHOLEDs hosted by 2BFCzPm exhibited excellent electroluminescence performance with a peak current efficiency of 38.2 cd/A and a maximum external quantum efficiency of 19.0%, which could be ascribed to the enhanced thermal stability, high triplet energy and good bipolar charge transport properties of the host material.  相似文献   

10.
The development of red/near-infrared (NIR) thermally activated delayed fluorescence (TADF) emitters are relatively lagging due to the spin statistics and energy gap law. Herein, we designed and synthesized a new NIR TADF emitter, 3-(4-(9,9′-spirobi[fluorene]-3-yl(phenyl)amino)phenyl)acenaphtho[1,2-b]pyrazine-8,9-dicarboni-trile (SDPA-APDC), by incorporating a spiro-type electron-donating moiety N,N-diphenyl-9,9′-spirobi[fluorene]-2-amine (SDPA) to an electron-withdrawing unit acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile (APDC). The photophysical, electrochemical and thermal properties of SDPA-APDC have been systematically explored. Consequently, the emitter was found high photoluminescence quantum yield (PLQY), narrow bandgap, small singlet-triplet energy gap (ΔEST) and excellent thermal stability. Furthermore, SDPA-APDC was developed for electroluminescence devices. The doped devices of SDPA-APDC achieved a red emission peak at 696 nm with a maximum external quantum efficiency (EQE) of 10.75%. And the non-doped device exhibited a NIR emission peak at 782 nm with a maximum EQE of 2.55%  相似文献   

11.
Novel mCP analogues consisting of blue phosphorescent host materials with fused-ring, 1,3-bis(5H-benzofuro[3,2-c]carbazol-5-yl)benzene (BFCz) and 1,3-bis(5H-benzo[4,5]thieno[3,2-c]carbazol-5-yl)benzene (BTCz) were designed and synthesized using benzofurocarbazole and benzothienocarbazole donor moieties. BFCz and BTCz exhibit high glass transition temperatures of 147 and 157 °C, respectively, and high triplet bandgaps of 2.94 and 2.93 eV, respectively. To explore the electroluminescence properties of these materials, multilayer blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated in the following device structure: indium–tin-oxide (ITO)/PEDOT:PSS/4,4’-cyclohexylidene bis[N,N-bis(4-methylphenyl)aniline] (TAPC)/1,3-bis(N-carbazolyl) benzene (mCP)/host:FIrpic/diphenylphosphine oxide-4-(triphenylsilyl)phenyl (TSPO1)/LiF)/Al. The PHOLEDs with BTCz exhibited efficient blue emission with luminous and quantum efficiencies of 30.9 cd/A and 15.5% at 1000 cd/m2, respectively.  相似文献   

12.
A group of dendrimers with oligo‐carbazole dendrons appended at 4,4′‐ positions of biphenyl core are synthesized for use as host materials for solution‐processible phosphorescent organic light‐emitting diodes (PHOLEDs). In comparison with the traditional small molecular host 4,4′‐N,N′‐dicarbazolebiphenyl (CBP), the dendritic conformation affords these materials extra merits including amorphous nature with extremely high glass transition temperatures (ca. 376 °C) and solution‐processibility, but inherent the identical triplet energies (2.60–2.62 eV). In comparison with the widely‐used polymeric host polyvinylcarbazole (PVK), these dendrimers possess much higher HOMO levels (–5.61 to –5.42 eV) that facilitate efficient hole injection and are favorable for high power efficiency in OLEDs. The agreeable properties and the solution‐processibility of these dendrimers makes it possible to fabricate highly efficient PHOLEDs by spin coating with the dendimers as phosphorescent hosts. The green PHOLED containing Ir(ppy)3 (Hppy = 2‐phenyl‐pyridine) dopant exhibits high peak efficiencies of 38.71 cd A?1 and 15.69 lm W?1, which far exceed those of the control device with the PVK host (27.70 cd A?1 and 9.6 lm W?1) and are among the best results for solution‐processed green PHOLEDs ever reported. The versatility of these dendrimer hosts can be spread to orange PHOLEDs and high efficiencies of 32.22 cd A?1 and 20.23 lm W?1 are obtained, among the best ever reported for solution‐processed orange PHOLEDs.  相似文献   

13.
We prepared three spirobenzotetraphene-based fused-ring spiro[benzo[ij]tetraphene-7,9′-fluorene] (SBTF) derivatives for use in non anthracene-type deep-blue organic light-emitting diode (OLED) hosts. 3-(2-Naphthyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9′-fluorene] (N-NSBTF), 3-[4-(2-naphthyl)phenyl]-10-naphthylspiro[benzo[ij]tetraphene-7,9′-fluorene] (NP-NSBTF), and 3-(phenyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9′-fluorene] (P-NSBTF) were synthesized via multi-step Suzuki coupling reactions. The optimized device structure – ITO/N,N′-bis-[4-(di-m-tolylamino)phenyl]-N,N′-diphenylbiphenyl-4,4′-diamine (DNTPD, 60 nm)/bis[N-(1-naphthyl)-N-phenyl]benzidine (NPB, 30 nm)/NSBTF hosts: LBD (5%) (20 nm)/aluminum tris(8-hydroxyquinoline) (Alq3, 20 nm)/LiF/Al – was characterized by its blue electroluminescence to have a current efficiency of 6.25 cd/A, a power efficiency of 5.07 lm/W, and an external quantum efficiency of 5.24% at 18.7 mA/cm2 at CIE coordinates of 0.130, 0.149.  相似文献   

14.
High-efficiency blue organic light-emitting diodes were reported by adopting two novel iridium phosphors. Due to phosphoryl moiety in ancillary ligands, both complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dyppy = 2-(2,4-difluorophenyl)pyridine, ppp = phenyl(pyridin-2-yl)phosphinate, dpp = dipyridinylphosphinate) own high electron mobility which can balance the injection and transport of carriers. Furthermore, the double light-emitting layers with TcTa (4,4′,4″-tris(carbazol-9-yl)triphenylamine) and 26DCzPPy (2,6-bis(3-(carbazol-9-yl)phenyl)pyridine) hosts broaden the exciton formation zone and suppress efficiency roll-off. The optimized double light-emitting layers devices exhibited decent performances with peak current efficiency near 50 cd/A and external quantum efficiency above 20% as well as negligible efficiency roll-off.  相似文献   

15.
We report low voltage driving and highly efficient blue phosphorescence organic light emitting diodes (PHOLEDs) fabricated by soluble process. A soluble small molecule mixed host system consisting of hole transporting 4,4’,4’’ tris(N-carbazolyl)triphenylamine (TCTA) and bipolar carrier transporting 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) exhibits high solubility with smooth surface properties. Moreover, this small molecule host shows the smoothest morphological property similar to a vacuum deposited amorphous film. A low driving voltage of 5.4 V at 1000 cd/m2 and maximum external quantum efficiency 14.6% obtained in the solution processed blue PHOLEDs are useful for large area low cost manufacturing.  相似文献   

16.
Highly efficient green phosphorescent organic light-emitting diodes (PHOLEDs) with low efficiency roll-off at high brightness have been demonstrated with a novel iridium complex. The host material 1,3-bis(carbazol-9-yl)benzene (mCP) with high triplet energy is also used as the hole transporting layer to avoid carrier accumulation near the exciton formation interface and reduce exciton quenching. It provides a new approach for easily fabricating PHOLED with high triplet energy emitter. Moreover, the hole blocking layer is extended into the light emitting layer to form a co-host, realizing better control of the carrier balance and broader recombination zone. As a consequence, a maximum external quantum efficiency of 20.8% and current efficiency of 72.9 cd/A have been achieved, and maintain to 17.4% and 60.7 cd/A even at 10,000 cd/m2, respectively.  相似文献   

17.
High-quality hosts are indispensable for simultaneously realizing stable, high efficiency, and low roll-off blue solution-processed organic light-emitting diodes (OLEDs). Herein, three solution processable bipolar hosts with successively reduced triplet energies approaching the T1 state of thermally activated delayed fluorescence (TADF) emitter are developed and evaluated for high-performance blue OLED devices. The smaller T1 energy gap between host and guest allows the quenching of long-lived triplet excitons to reduce exciton concentration inside the device, and thus suppresses singlet-triplet and triplet-triplet annihilations. Triplet-energy-mediated hosts with high enough T1 and better charge balance in device facilitate high exciton utilization efficiency and uniform triplet exciton distribution among host and TADF guest. Benefited from these synergetic factors, a high maximum external quantum efficiency (EQEmax) of 20.8%, long operational lifetime (T50 of 398.3 h @ 500 cd m−2), and negligible efficiency roll-off (EQE of 20.1% @ 1000 cd m−2) are achieved for bluish-green TADF OLEDs. Additionally introducing a narrowband emission multiple-resonance TADF material as terminal emitter to accelerate exciton dynamic and improve exciton utilization, a higher EQEmax of 23.1%, suppressed roll-off and extended lifetime of 456.3 h are achieved for the sky-blue sensitized OLEDs at the same brightness.  相似文献   

18.
Efficient deep-blue fluorescent emitters are of particular significance in organic light-emitting devices (OLEDs). An ambipolar deep-blue emitter, 4,4′-bis(4-(1-(4-(tert-butyl)phenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)-1,1′-binaphthalene (2NBTPI), was designed, synthesized and applied in a high-efficiency deep-blue emitting OLED. By modifying with binaphthyl, 2NBTPI exhibits a high thermal stability, deep blue emission as well as spatially separated HOMO and LUMO orbits. Comparing with its mononaphthyl counterpart 1,4-bis(4-(1-(4-(tert-butyl)phenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)naphthalene (NBTPI), 2NBTPI shows more balanced charge transport properties, better color purity (color index: (0.15, 0.09) versus (0.15, 0.11)), higher external quantum efficiency (EQE) (5.95% versus 5.73%) and slower efficiency roll-off (EQE roll-off at 100 mA cm−2: 13.1% versus 27.6%). To the best of our knowledge, OLED performances of 2NBTPI are comparable to the best reported non-doped deep-blue emitters.  相似文献   

19.
20.
A universal low optimum doping concentration of below 5% was demonstrated in phosphorescent organic light-emitting diodes (PHOLEDs) by managing the energy levels of charge transport materials. The device performances of PHOLEDs could be optimized at a low doping concentration of 3% irrespective of the host material in the emitting layer. The suppression of charge trapping and hopping by the dopant through charge transport layer engineering optimized the device performance at low doping concentration. In addition, it was revealed that PHOLEDs with low optimum doping concentration show better quantum efficiency, low efficiency roll-off and low doping concentration dependency of the device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号