首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

2.

Abstract  

Ce–Mn mixed oxides with a Mn/(Ce + Mn) molar ratio of 0.25 were prepared by solvothermal (ST-1) and co-precipitation (CP) methods, and Ba was loaded on the Ce–Mn oxides. In addition, CeO2–MnO x –BaO catalysts with various compositions were directly prepared by the solvothermal (ST-2) method. The NO decomposition activities of these catalysts were examined. Among the catalysts examined, the ST-2 catalyst having a nominal composition of Ce0.8Mn0.15Ba0.05O x exhibited the highest activity; 77% NO conversion to N2 was attained at 800 °C. These catalysts were characterized by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Raman and XPS results indicate that the CP catalyst had larger amounts of the BaMnO3-δ and/or Mn3O4 phases. The ST-1 and ST-2 catalysts had highly dispersed Ba species on the surface. The ST-2 catalyst had Mn species with the lowest binding energy of Mn 2p and also had a high population of oxygen vacancies in the ceria lattice, suggesting that Mn species with a low oxidation state contributes to the formation of oxygen vacancies, which play an important role in this reaction.  相似文献   

3.
In this article, a facile one-step strategy for the synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/carbon nanotubes (CNT) catalysts was discussed. The as-prepared catalysts exhibited 73.6–99.4% NO conversion at 120–180 °C at a weight hourly space velocity (WHSV) of 210 000 ml·gcat 1·h 1, which benefited from the formation of amorphous MnO2, Fe2O3, CeO2, and Ce2O3, as well as high Ce3 + and surface oxygen (Oε) contents. The mechanism of formation of MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts was also proposed.  相似文献   

4.
V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3.  相似文献   

5.
The nanostructured solid solution Mn0.5Ce0.5O2 is synthesized to develop effective noble metal free catalysts for the detoxification of technogenic contaminants. Its chemical and phase compositions and textural characteristics are studied by differential thermal analysis, X-ray diffraction analysis, laser mass spectrometry, and low-temperature nitrogen adsorption. The activity of the solid solution in the oxidation of carbon monoxide is determined by the flow method within a temperature range of 20–300°C at atmospheric pressure, a gas hourly space velocity of 1800 h−1 for the following gas mixture composition, vol %: CO, 3.6; O2, 8.0; N2, balance. The activity of Mn0.5Ce0.5O2 is shown to be appreciably higher than the activity of MnOx and CeO2, and the temperature of 100% conversion is 92, 120, and 210°C, respectively. Using the solid solution as a support and the technique of impregnation, we synthesize the nanostructured catalysts Cu/Mn0.5Ce0.5O2 and Ag/Mn0.5Ce0.5O2, which manifest high activity in the oxidation of carbon monoxide: the temperature of 100% conversion is 77 and 85°C, respectively. The new catalysts could be of interest for the purification of industrial and motor vehicle wastes.  相似文献   

6.
A series of manganese–cerium mixed oxides were prepared by a glycothermal method, and the NO decomposition activities of the Ba-loaded Ce–Mn oxides were examined. Among the catalysts examined, the highest NO conversion was obtained on the BaO/Ce–Mn oxide catalyst with a Mn/(Ce+Mn) ratio of 0.25. The X-ray diffraction and Raman analyses indicated the formation of Ce–Mn oxide solid solutions with a cubic fluorite structure. The electron spin resonance analysis indicated the presence of paramagnetic Mn2+ species in the composite catalysts. Incorporation of Mn2+ in the fluorite structure of CeO2 causes an increase in the concentration of oxygen vacancies, which play an important role in the NO decomposition activity of the catalysts. The catalysts were also characterized by X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Based on the results obtained, the relationship between the physical properties of the catalysts and their NO decomposition activities was discussed.  相似文献   

7.
Abstract

We report the NO conversion with NH3 at low temperature over MnOx-supported on titanate nanotubes. The effect of SO2 and water on catalytic activity was also analyzed. For the catalytic activity tests, three catalysts with 1, 3, and 5?wt.% of MnOx were synthesized. A high NO conversion (92%) at 180?°C is reported for the 1Mn/NTiO2 catalyst. The further addition of MnOx to the support improves the catalytic activity but NO conversion (95%) was shifted to a higher temperature (from 180 to 220?°C). However, the presence of SO2 (50?ppm) and water (5 vol.%) diminishes the NO conversion up to 60%, which remains after 300?min. We found that addition of MnOx increases the Lewis acid sites concentration of the nanotubes. As the Lewis acid sites increase (from 1.86 to 3.56 µmol m?2), the Mn4+/Mn3+ ratio on the surface of the nanotubes decreases (from 4 to 1.6), which indicates that the surface of the catalysts is deficient in electrons. We concluded that a high Lewis acid sites concentration and a low Mn4+/Mn3+ ratio, hence a surface deficient in electrons, improves the catalytic activity to remove NO on the Mn/NTiO2 catalysts.  相似文献   

8.
The catalytic activities of strontium substituted La0.7Sr0.3MnO3 type perovskite catalysts for NO reduction using H2 as reducing agent has been studied, which is further improved by incorporation of Pt outside (0.1 wt.%Pt/La0.7Sr0.3MnO3) and inside (La0.7Sr0.3Mn0.97Pt0.03O3) the perovskite lattice structure. Pt shows excellent enhancement in catalytic selectivity towards N2 when supported on the perovskite. The catalysts were characterized using thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area. Catalysts evaluations were carried out using thermo-gravimetric analysis coupled with mass spectra (TG-MS).  相似文献   

9.
A series of acid modified CeO2 catalysts were prepared and used for selective catalytic reduction (SCR) of NO with NH3. The results showed that the SCR activity of pure CeO2 was greatly enhanced by the modification of acid. The CeO2 modified by 20% phosphotungstic acid exhibited the best NO conversion in a wide temperature range of 150–550 °C. The SCR activity was slightly influenced by SO2 and H2O, while such effect was reversible. The improvement of SCR activity and N2 selectivity over CeO2 catalyst modified by acid was attributed to the enhanced amount and intensity of Brønsted or Lewis acid sites.  相似文献   

10.
《Ceramics International》2020,46(4):4394-4401
MnOx-CeO2 (denoted as Mn–Ce) nanorod and MnOx-CeO2 nanooctahedra catalysts were synthesized by the hydrothermal method and were used for selective catalytic reduction of NO with NH3. The catalytic performance tests showed that the NO removal efficiency of CeO2 catalysts was obviously improved after loading MnOx. The structure and properties of catalysts had been characterized by SEM、TEM、XRD、BET、XPS、H2-TPR、NH3-TPD and in situ DRIFTS. It was found that Mn–Ce catalyst were of uniform core-shell structure, higher concentrations of Mn4+ and Ce3+, better reducibility, the increase of weak acid sites. The results of in situ DRIFTS indicated that the NH3-SCR reaction should obey the E–R mechanism. Moreover, the promotion effect and mechanism of MnOx doped CeO2 was demonstrated, which improved the catalytic activity of Mn–Ce catalysts.  相似文献   

11.
The catalytic oxidalive coupling of metnane to ethylene and ethane with manganese oxide catalysts promoted with alkali metal and alkali metallic-chloride has been studied at atmospheric pressure in a fixed bed flow reactor. The main studies of reaction were carried out over maganese oxide catalysts promoted with sodium chloride and the structure and surface morphology of these catalysts was characterized by an X-ray diffraction and a scanning electron microscope. The powdered MnO2 was changed into Mn2O3, and MnO2 containing alkali metallic-chlorides was not changed to new ternary oxides but changed into Mn3O4 and/or Mn2O3 at higher calcination temperature(above 780°C). The optimum content of NaCl promoted was 10–20wt%, an in over 10wt%, the conversion and the selectivity were kept constant. The main factor on deactivation of catalysts was the loss of thepromoter(NaCl). The addition of alkali metal salts to manganese oxide catalyst has enhanced C2(C2H4 + C2H6) selectivity due to neutralizing acid sites more than the electronic factor. It was confirmed that chlorine in alkali metallicchloride has enhanced the formation of C2H4, resulting in a good C2-yield (up to 25.7%).  相似文献   

12.
Sr-promoted rare earth (viz. La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er and Yb) oxide catalysts (Sr/rare earth ratio = 0·1) are compared for their performance in the oxidative coupling of methane (OCM) to C2 hydrocarbons and oxidative dehydrogenation of ethane (ODE) to ethylene at different temperatures (700 and 800°C) and CH4 (or C2H6)/O2 ratios (4–8), at low contact time (space velocity = 102000 cm3 g−1 h−1). For the OCM process, the Sr–La2O3 catalyst shows the best performance. The Sr-promoted Nd2O3, Sm2O3, Eu2O3 and Er2O3 catalysts also show good methane conversion and selectivity for C2 hydrocarbons but the Sr–CeO2 and Sr–Dy2O3 catalysts show very poor performance. However, for the ODE process, the best performance is shown by the Sr–Nd2O3 catalyst. The other catalysts also show good ethane conversion and selectivity for ethylene; their performance is comparable at higher temperatures (≥800°C), but at lower temperature (700°C) the Sr–CeO2 and Sr–Pr6O11 catalysts show poor selectivity. © 1998 SCI.  相似文献   

13.
The goal of this study was to understand the structure–activity relationship for unpromoted and ceria‐promoted MnOx/SiO2 catalysts used in CO oxidation. SiO2 and CeO2‐promoted SiO2 (20% CeO2) were used as supports to prepare MnOx/SiO2 catalysts with various manganese (Mn) loadings. X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) data indicated a higher Mn dispersion on ceria‐promoted than on unpromoted MnOx/SiO2 catalysts. Analysis of the XRD patterns and Mn2p XPS spectra indicated that Mn was present as MnO2 on MnOx/SiO2 with low Mn loadings and ceria‐promoted MnOx/SiO2 catalysts and as mixed MnO2/Mn2O3 on MnOx/SiO2 catalysts with high Mn loadings. Kinetic data obtained for CO oxidation on unpromoted and ceria‐promoted MnOx/SiO2 catalysts are presented and interpreted in correlation with the catalyst surface and bulk structure. A synergistic catalytic effect was observed in the case of the ceria‐promoted MnOx/SiO2 catalysts. Post‐reaction XRD and XPS analysis of catalysts indicated that the presence of ceria precludes formation of the less catalytically active Mn3O4 species from MnO2 deposited initially on the SiO2 support. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
MnOx–WOx–CeO2 catalysts synthesized using a sol–gel method were investigated for the low-temperature NH3-SCR reaction. Among them, W0.1Mn0.4Ce0.5 mixed oxides exhibited above 80% NOx conversion from 140 to 300 °C. In addition, this catalyst exhibited high stability and CO2 tolerance in a 50 h activity test at 150 °C. Substantially reduced N2O production and enhanced N2 selectivity were achieved by WO3 doping, which was due to the weakened reducibility and increased number of acid sites. The decreased SO2 oxidation activity as well as the reduced formation of ammonium and manganese sulfates resulted in a high SO2 resistance of this catalyst.  相似文献   

15.
Fe2O3–K2O–CeO2 catalysts with various ratios of K2O to CeO2 were prepared by the wet-chemical method. Their phase compositions, reducibility, valence states of elements and catalytic activities for ethylbenzene dehydrogenation were studied. The results demonstrated that when the weight ratio of K2O: CeO2 was 1.40, the catalyst had highest ethylbenzene conversion and styrene selectivity, which were attributed to the optimization of active phase content and electron transfer ability, etc. Further, higher CeO2 content not only enhanced styrene selectivity, but also prolonged the life cycle of catalysts.  相似文献   

16.
The effect of different dopants including niobium, iron, tungsten and zirconium oxide on the low-temperature activity of MnOx–CeO2 catalysts for the selective catalytic reduction (SCR) of NOx with ammonia has been studied with coated cordierite monoliths in model gas experiments. A clearly higher activity and particularly superior nitrogen selectivity was obtained with the niobium-doped catalyst in comparison with the MnOx–CeO2 reference system. At 200 °C, the DeNOx was 80% while the N2 selectivity reached more than 96%. In contrast, a decrease of the SCR activity was observed when iron, zirconium or tungsten oxides were added to MnOx–CeO2. However, the addition of niobium oxide did not improve the resistance of the catalyst against SO2 poisoning. A strong and irreversible deactivation occurred after exposure to SO2.  相似文献   

17.
The effect of cobalt precursors such as cobalt acetate and cobalt nitrate on NO oxidation was examined over cobalt oxides supported on various supports such as SiO2, ZrO2, and CeO2. The N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction with H2 (H2-TPR), NO chemisorptions, and temperature-programmed oxidation (TPO) with mass spectroscopy were conducted to characterize catalysts. The NO uptake as well as the catalytic activity for NO oxidation was dependent on the kinds of cobalt precursors and supports for supported cobalt oxides catalysts. Among tested catalysts, Co3O4/CeO2 prepared from cobalt acetate showed the highest catalytic activity. The catalytic activity generally increased with the amount of chemisorbed NO. Reversible deactivation was observed over Co3O4/CeO2 in the presence of H2O. On the other hand, irreversible deactivation occurred over the same catalyst even in the presence of 5 ppm SO2 in a feed. The strongly adsorbed SO2 can prohibit NO from adsorbing on the active sites and also can prevent formed NO2 from desorbing off the catalyst surface. The formation of SO3 cannot be observed from the chemisorbed SO2 on Co3O4/CeO2 during TPO.  相似文献   

18.
《Catalysis communications》2007,8(11):1702-1710
The catalytic activity of nanosize gold catalysts supported on MnO2–TiO2 and prepared by deposition–precipitation method has been investigated for preferential oxidation of carbon monoxide in H2 stream. The catalysts were characterized by inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, nitrogen sorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. The influence of pH in the preparation process and the amount of MnO2 loading on the catalytic properties of the Au/MnO2–TiO2 catalysts were also studied. Fine dispersion of gold nanoparticles on all the supports was obtained. Especially, Au/MnO2–TiO2 with MnO2/TiO2 mol ratio of 2:98, showed a mean Au particle size of 2.37 nm. The nanosized support constrained the size of gold. The addition of MnO2 on Au/TiO2 catalyst improved the selectivity of CO oxidation without sacrificing CO conversion in hydrogen stream between 50 and 100 °C. This could be attributed to the interactions of gold metal with MnO2–TiO2 support and the optimum combination of metallic and electron-deficient gold on the catalyst surface.  相似文献   

19.
The gas-phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene in the presence of molecular oxygen has been studied over various Mn-based catalysts. It is found that LiCl/MnOx/PC (Portland cement) catalyst exhibits the highest catalytic performance, and a 42.8% cyclohexane conversion, 58.8% cyclohexene selectivity and 25.2% cyclohexene yield can be achieved under 600 °C, 20,000 h−1 and C6H12/O2/N2=14/7/79. There are good correlations between the selectivities to cyclohexene and the electrical conductivities of Li doped Mn-based catalysts, from which it is deduced that the non-fully reduced oxygen species (O2, O22−, O) involved in a new phase of LiMn2O4 might be responsible for the high selectivity toward cyclohexene, whereas the Mn2O3 crystal phase results in the COx formation. The selectivity to cyclohexene increases with increasing molar ratio of Li to Mn in LiCl/MnOx/PC.  相似文献   

20.
The catalytic reduction of nitrogen monoxide by propene in the presence of excess oxygen over gold based ceria catalyst was studied. Adsorption and temperature programmed desorption of NO/O2 on Au/CeO2 reveal that the catalyst adsorbs and desorbs NO over a large range of temperature. A maximum of 26% conversion of NO x was obtained around 210 °C, with a selectivity of 50% to N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号