首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With rapid fossil fuel consumption and ecological concerns, alternative options of green energy development and its efficient storage technology is an emergent area of research. Nanocellulose is observed to be a very-promising sustainable and environmentally friendly nanomaterial for green and renewable electronics for advanced electrochemical energy conversion/conservation devices. This review begins with a basic introduction on the sources and properties of nanocellulose. It provides an overview of the recent advancements made by researchers in integrating nanocellulose with active materials to form a flexible film/aerogel/3D structures as a substrate for powering portable electronics, electric vehicles, etc. The review highlights the use of nanocellulose-based composites in energy conversion devices such as solar cells, piezoelectric materials, and lithium ion batteries. Recent research shows that the power conversion efficiency of solar cells and the piezoelectric performance of piezoelectric materials can be increased when the matrix is reinforced with nanocellulose. The review also focuses on the updates of nanocellulose-based composites in separators, binders, and electrodes of energy conservation devices such as supercapacitors, and energy capture devices such as CO2 separators. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48959.  相似文献   

2.
随着生物医用材料的需求量日趋增大,磷灰石与人工合成高分子的复合材料成为组织修复和替代材料的研究热点。以不同单体分类,综述了磷灰石与合成的非降解高分子、可降解高分子复合材料的研究进展;对羟基磷灰石/合成高分子复合材料的制备方法、性能及其应用等方面进行研究,并对此复合材料存在的问题和发展前景进行讨论。说明从分子水平设计出具有良好力学性能、生物活性和生物相容性的医学材料,具有十分重要的意义。  相似文献   

3.
《Ceramics International》2022,48(11):15839-15847
This paper explores the processing of an alumina matrix composite with a percolating network of graphene oxide (GPO), which exhibits a moderate electric resistivity and a near zero temperature coefficient of resistance. Different formulations of GPO–alumina composites were processed using a water–base blending, and, the pellets were densified by pressureless sintering under Argon flow. Electrical conduction at room temperature was achieved in the 2 wt % GPO–alumina composite sintered at 1400 °C, and, the 3 wt % GPO–alumina composites sintered at 1400, 1550 and 1700 °C. An investigation of the degradation of electrical conductivity was used to identify potential stable operating regimes in which these materials could be used as heaters. Thermogravimetric analysis using the Ozawa–Flynn–Wall method, was used to determine the kinetic parameters of a 3 wt % GPO composite sintered at 1400 °C which, had an activation energy for GPO degradation of 195 ± 68 kJ/mol and, an estimated thermal lifetime of 8.7 ± 0.8 years for a conversion of 0.5 wt % (failure criterion) at an application temperature of 340 °C.  相似文献   

4.
5.
6.
A graphene-based composite, consisting of a thermosetting polymeric matrix filled with multilayer graphene microsheets (MLGs), is developed for application in thin radar absorbing materials. An innovative simulation model is proposed for the calculation of the effective permittivity and electrical conductivity of the composite, and used for the electromagnetic design of thin radar absorbing screens. The model takes into account the effects of the MLG morphology and of the fabrication process on the effective electromagnetic properties of the composite. Experimental tests demonstrate the validity of the proposed approach and the accuracy of the developed simulation models, which allow to understand the interaction mechanism between the incident electromagnetic field radiation and the MLG-based composite. Two dielectric Salisbury screen prototypes with resonant frequency at 12 GHz or 12.5 GHz and total thickness of 1.8 mm and 1.7 mm, respectively, are fabricated and tested. The results and technique proposed represent a simple and effective approach to produce thin absorbing screens for application in stealth technology or electromagnetic interference suppression.  相似文献   

7.
Carbon nanofillers containing biodegradable polymer composites have become an emerging frontier in materials science and engineering because of their potential as environmentally friendly materials in multiple applications, from load-bearing to advanced packaging to biomedical applications. Herein, we present the effect of processing parameters on the final morphology and the resulting properties of the biodegradable polymer composites containing carbon nanotubes (CNTs) or carbon nanofibers (CNFs). Various strategies can be employed to develop such composites; however, the type of morphology, which results during processing, significantly affects the final properties of the obtained composites. Therefore, various processing strategies such as melt-blending, additive manufacturing, and electrospinning are critically reviewed, together with the potential applications in load-bearing, tissue engineering, electromagnetic shielding, gas sensing, and packaging. Finally, we discuss the existing challenges and future directions in designing CNTs/CNFs containing biodegradable polymer composites with desired properties.  相似文献   

8.
Using molecular dynamics and classical continuum concepts, we investigated the effects of hydrogen functionalization on the fracture strength of graphene and also on the interfacial properties of graphene–polymer nanocomposite. Moreover, we developed an atomistic model to assess the temperature and strain rate dependent fracture strength of functionalized graphene along various chiral directions. Results indicate that hydrogen functionalization at elevated temperatures highly degrade the fracture strength of graphene. The functionalization also deteriorates the interfacial strength of graphene–polymer nanocomposite. Near-crack-tip stress distribution depicted by continuum mechanics can be successfully used to investigate the impact of hydrogen passivation of dangling carbon bonds on the strength of graphene. We further derived a continuum-based model to characterize the non-bonded interaction of graphene–polymer nanocomposite. These results indicate that classical continuum concepts are accurate even at a scale of several nanometers. Our work provides a remarkable insight into the fracture strength of graphene and graphene–polymer nanocomposites, which are critical in designing experimental and instrumental applications.  相似文献   

9.
Up until now, no standard procedure to analyze and quantify the dispersion of particles in the polymer matrix exists. From the conductive hybrid polymer–polymer–graphene nanoplatelets composites we developed, this article attempts to showcase methodologies to analyze and quantify particle with the use of scanning electron microscopy images and collection of the elemental maps of carbon, oxygen, and nitrogen by energy dispersive spectroscopy (EDS) analysis. Image analysis was performed on the resulting map to extract the area and location data of graphene particles by subtracting elemental maps. Shadowing or charging problem in the images acquired from EDS was overcome by the polished surface and analyzing a sample twice using a novel approach of 180° opposed. Merging the data from the two elemental maps, taken 180° opposed, can be an alternative to the use of polished samples. From these different dispersion analysis approaches, it was possible to quantify different particles and their effects on the properties of the composites.  相似文献   

10.
The effect of graphene on the corrosion inhibition properties of a hybrid epoxy–ester–siloxane–urea polymer was investigated. The weight fraction of graphene was varied from 1 to 2 wt%. Direct current polarization (DCP) and electrochemical impedance spectroscopic (EIS) techniques were used to measure the polarization and coating resistance of the coated aluminum alloy substrate. The grapheme/hybrid polymer composite coatings showed much higher corrosion inhibition property when compared to the neat hybrid polymer coating. An increase in glass transition temperature and rubbery region modulus was also observed for composites containing 1–2 wt.% of graphene. A direct correlation between the rubbery plateau modulus of free standing composite thin films and corrosion resistance of the composite coatings was made, indicating that the corrosion protection mechanism is due to restriction of the polymer chain motion by graphene which causes a decrease in coating permeability.  相似文献   

11.
The friction and wear behaviour of MWCNT-reinforced Ni matrix bulk composites is investigated and compared to the response of a pure bulk reference sample. Several effects are observed in the composites such as microstructural refinement, leading to improved hardness, coefficient of friction and wear resistance. Said refinement might also be responsible for a non-trivial behaviour of hot-pressed composites under a 300 mN load, due to higher oxidation rates. The worn volume is analysed and discussed from a microstructural and morphological point of view. In this context, a direct correlation is shown between two relevant wear parameters, namely, the wear constant K and the cutting efficiency fAB. In addition, the tribochemistry is investigated by Raman spectroscopy and linked to the friction and wear behaviour. Finally, the wear volume reduction peaked at 94.1% in HUP samples. This clearly indicates the high potential of these composites for tribological applications.  相似文献   

12.
《Ceramics International》2016,42(6):7099-7106
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8 GHz to 12 GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5 wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1 mm, the minimum reflection coefficient (RC) reaches −33 dB, and the effective absorption bandwidth is more than 3.1 GHz.  相似文献   

13.
We have prepared polymer nanocomposites reinforced with exfoliated graphene layers solely via melt blending. For this study polyethylene terephthalate (PET) was chosen as the polymer matrix due to its myriad of current and potential applications. PET and PET/graphene nanocomposites were melt compounded on an internal mixer and the resulting materials were compression molded into films. Transmission electron microscopy and scanning electron microscopy revealed that the graphene flakes were randomly orientated and well dispersed inside the polymer matrix. The PET/graphene nanocomposites were found to be characterized by superior mechanical properties as opposed to the neat PET. Thus, at a nanofiller load as low as 0.07 wt%, the novel materials presented an increase in the elastic modulus higher than 10% and an enhancement in the tensile strength of more than 40% compared to pristine PET. The improvements in the tensile strength were directly correlated to changes in elongation at break and indirectly correlated to the fracture initiation area. The enhancements observed in the mechanical properties of polymer/graphene nanocomposites achieved at low exfoliated graphene loadings and manufactured exclusively via melt mixing may open the door to industrial manufacturing of economical novel materials with superior stiffness, strength and ductility.  相似文献   

14.
15.
Graphene oxide-intercalated α-metal hydroxides were prepared using layers from the delaminated colloidal dispersions of cetyltrimethylammonium-intercalated graphene oxide and dodecylsulfate-intercalated α-hydroxide of nickel/cobalt as precursors. The reaction of the two dispersions leads to de-intercalation of the interlayer ions from both the layered solids and the intercalation of the negatively charged graphene oxide sheets between the positively charged layers of the α-hydroxide. Thermal decomposition of the intercalated solids yields graphene/nanocrystalline metal oxide composites. Electron microscopy analysis of the composites indicates that the nanoparticles are intercalated between graphene layers.  相似文献   

16.
This review presents the recent achievements on carbon additives incorporated in ZrB2 ceramics, improved properties, and their advancements. Monolithic ZrB2 ceramics have broad potential applications, but their critical drawbacks such as poor damage tolerance, and weak oxidation and ablation resistance confines their applicability. It is an important issue to resolve these shortages in physiochemical properties by engineering the composite ingredients and process design of the ceramic counterparts for an extensive production and applications, which are especially essential in high–tech industries and products. Carbon additives have exceptional characteristics including low density, low cost, and excellent thermo–mechanical stability. These materials have been incorporated in ZrB2 ceramics to enhance their efficiency and form practical composite ceramics. Although addition of the secondary carbonaceous phases is generally supposed to improve the mechanical properties of ZrB2 composites, it may also result in a decrease in other aspects of performance, comparing with monolithic ZrB2 ceramics. In this work, we reviewed the methods and strategies for the preparation of carbon modulated ZrB2 ceramic composites. Moreover, the advantages, disadvantages, and the productivity of the introduced composite ceramics have been explored and featured.  相似文献   

17.
Carbon fibre–phenolic matrix (CF–P) composites containing graphene nanoplatelets (GNPs) were manufactured for improved mechanical and thermal properties. For comparison, micrometer-size pyrolytic graphite powder (GP) was also incorporated in CF–P composites. The loading of carbon fibres was kept constant at 60?wt-% while the quantity of GNPs was varied from 0.1?wt-% to 0.3?wt-% and GP from 1.0?wt-% to 3.0?wt-%. Only GNPs were functionalised by ultraviolet-ozone treatment to improve their dispersion in the matrix while all the composites were manufactured by hand layup method and characterised by scanning electron microscopy, impact, flexural, thermogravimetry and ablation tests. The composite containing 0.3?wt-% GNPs showed considerable improvement in ablation, flexural and impact testing as compared to CF-P composites containing GP. Finally, the ablation mechanisms of post-ablated composites were discussed in the light of available data in the literature.  相似文献   

18.
(Zr, Hf)B2–SiC nanostructured composites were fabricated by high energy ball milling and reactive spark plasma sintering (RSPS) of HfB2, ZrSi2, B4C and C. Highly dense composites with homogeneously intermixed ultra-fine (Zr, Hf)B2 and SiC grains (100–300 nm) were obtained after RSPS at 1600 °C for 10 min. The densification was promoted by high energy ball milling and ZrSi2 additive. The additives were almost completely transformed into ZrB2 and SiC during densification. The improvement of flexural strength and fracture toughness (641 MPa and 5.36 MPa m1/2, respectively) was achieved. The relationships between the ultra-fine microstructure and mechanical properties were discussed.  相似文献   

19.
In this study, we present a DLP 3D-printing strategy for the fabrication of SiCN ceramic matrix composites (CMCs). The polysilazane-based preceramic polymer containing inert fillers was UV-cured into a green body and then converted to SiCN CMCs after pyrolysis. The introduced fillers (Si3N4 particles and Si3N4 whiskers) as reinforcements are well dispersed in the matrix, which can not only effectively reduce the linear shrinkage and weight loss, but also greatly improve the mechanical properties of the SiCN CMCs. The bending strength of the SiCN CMCs reinforced with 10 wt% Si3N4 whiskers (without surface polished) reached 180.7 ± 15.6 MPa. Furthermore, the effect of fillers content on microstructure and porosity of the SiCN CMCs are discussed, and it was found that the excessive fillers led to increased pore defects and decreased continuity of the matrix, thereby reducing the mechanical properties of the SiCN CMCs. This strategy provides a promising ceramic manufacturing technique to fabricate polymer‐derived CMCs with complex-shaped and high-performance for potential demanding applications.  相似文献   

20.
In this study, mechanical and dielectric properties of epoxy nanocomposites with two types of graphene, <?10 layer stacks (GEC10) and <?30 layer stacks (GEC30) were investigated. Results showed that the number of graphene layers remarkably affected the dielectric properties of epoxy nanocomposites. The real and imaginary parts of relative permittivity and loss tangent of GEC10 samples were noticeably enhanced and reached to 1.29, 20 and 15.6 times respectively for 1?wt-% graphene sample compared to GEC30 samples. Meanwhile, tensile tests showed a peak for tensile strength of GEC10 and GEC30 samples with 0.1?wt-% graphene, which improved by 13 and 7.9% with respect to pure epoxy respectively. In addition, flexural properties did not change significantly compared to the pure epoxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号