首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
窄带隙共轭聚合物材料是新型太阳能电池的研究热点。按窄带隙聚合物材料的结构分类,简要总结了不同种类窄带隙共轭聚合物类太阳能电池材料的设计、合成及器件性能,并指出了该研究领域目前还存在的问题和今后发展的方向。  相似文献   

2.
3.
4.
Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.  相似文献   

5.
Currently, n‐type acceptors in high‐performance all‐polymer solar cells (all‐PSCs) are dominated by imide‐functionalized polymers, which typically show medium bandgap. Herein, a novel narrow‐bandgap polymer, poly(5,6‐dicyano‐2,1,3‐benzothiadiazole‐alt‐indacenodithiophene) (DCNBT‐IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron‐withdrawing cyano functionality enables DCNBT‐IDT with n‐type character and, more importantly, alleviates the steric hindrance associated with typical imide groups. Compared to the benchmark poly(naphthalene diimide‐alt‐bithiophene) (N2200), DCNBT‐IDT shows a narrower bandgap (1.43 eV) with a much higher absorption coefficient (6.15 × 104 cm?1). Such properties are elusive for polymer acceptors to date, eradicating the drawbacks inherited in N2200 and other high‐performance polymer acceptors. When blended with a wide‐bandgap polymer donor, the DCNBT‐IDT‐based all‐PSCs achieve a remarkable power conversion efficiency of 8.32% with a small energy loss of 0.53 eV and a photoresponse of up to 870 nm. Such efficiency greatly outperforms those of N2200 (6.13%) and the naphthalene diimide (NDI)‐based analog NDI‐IDT (2.19%). This work breaks the long‐standing bottlenecks limiting materials innovation of n‐type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all‐PSCs.  相似文献   

6.
To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small‐molecule acceptors, IT‐2Cl and IT‐4Cl, is designed and synthesized by introducing easy‐synthesis chlorine substituents onto the indacenodithieno[3,2‐b]thiophene units. The unique feature of the large dipole moment of the C? Cl bond enhances the intermolecular charge‐transfer effect between the donor–acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C? Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low‐lying highest occupied molecular orbital level. In addition, since IT‐2Cl and IT‐4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.  相似文献   

7.
Compared with inorganic or perovskite solar cells, the relatively large non-radiative recombination voltage losses (ΔVnon-rad) in organic solar cells (OSCs) limit the improvement of the open-circuit voltage (Voc). Herein, OSCs are fabricated by adopting two pairs of D–π–A polymers (PBT1-C/PBT1-C-2Cl and PBDB-T/PBDB-T-2Cl) as electron donors and a wide-bandgap molecule BTA3 as the electron acceptor. In these blends, a charge-transfer state energy (ECT) as high as 1.70–1.76 eV is achieved, leading to small energetic differences between the singlet excited states and charge-transfer states (ΔECT ≈ 0.1 eV). In addition, after introducing chlorine atoms into the π-bridge or the side chain of benzodithiophene (BDT) unit, electroluminescence external quantum efficiencies as high as 1.9 × 10−3 and 1.0 × 10−3 are realized in OSCs based on PBTI-C-2Cl and PBDB-T-2Cl, respectively. Their corresponding ΔVnon-rad are 0.16 and 0.17 V, which are lower than those of OSCs based on the analog polymers without a chlorine atom (0.21 and 0.24 V for PBT1-C and PBDB-T, respectively), resulting in high Voc of 1.3 V. The ΔVnon-rad of 0.16 V and Voc of 1.3 V achieved in PBT1-C-2Cl:BTA3 OSCs are thought to represent the best values for solution-processed OSCs reported in the literature so far.  相似文献   

8.
Recent advances in the material design and synthesis of nonfullerene acceptors (NFAs) have revealed a new landscape for polymer solar cells (PSCs) and have boosted the power conversion efficiencies (PCEs) to over 15%. Further improvements of the photovoltaic performance are a significant challenge in NFA‐PSCs based on binary donor:acceptor blends. In this study, ternary PSCs are fabricated by incorporating a fullerene derivative, PC61BM, into a combination of a polymer donor (PBDB‐TF) and a fused‐ring NFA (Y6) and a very high PCE of 16.5% (certified as 16.2%) is recorded. Detailed studies suggest that the loading of PC61BM into the PBDB‐TF:Y6 blend can not only enhance the electron mobility but also can increase the electroluminescence quantum efficiency, leading to balanced charge transport and reduced nonradiative energy losses simultaneously. This work suggests that utilizing the complementary advantages of fullerene and NFAs is a promising way to finely tune the detailed photovoltaic parameters and further improve the PCEs of PSCs.  相似文献   

9.
10.
11.
12.
13.
14.
Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π–π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.  相似文献   

15.
16.
Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy‐loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and VOC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub‐cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering.  相似文献   

17.
High‐performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron‐accepting material 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophne) (ITIC) with a wide‐bandgap electron‐donating polymer PTzBI or PTzBI‐DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk‐heterojunction films, and thus the overall photovoltaic performances. Single‐junction PSCs based on PTzBI:ITIC and PTzBI‐DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron‐donating conjugated polymers consisting of imide‐functionalized electron‐withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide‐bandgap conjugated polymers as electron‐donating materials for high‐performance nonfullerene solar cells toward high‐throughput roll‐to‐roll processing technology.  相似文献   

18.
Typical lead‐based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near‐infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR‐chromophore that is also a Lewis‐base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis‐basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination‐induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one‐sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR‐harvesting PSCs.  相似文献   

19.
Suppression of carrier recombination is critically important in realizing high‐efficiency polymer solar cells. Herein, it is demonstrated difluoro‐substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D‐conjugated D–A copolymer J91 is designed and synthesized with bi(alkyl‐difluorothienyl)‐benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low‐lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n‐type organic semiconductor acceptor m ‐ITIC (3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm?2 is obtained for the polymer solar cells based on J91 /m ‐ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号