首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the usefulness of RF magnetron sputtering ZnO thin film at softening temperature, as interfacial barrier layer in air stable flexible inverted organic photovoltaic devices. We investigate the influence of annealing on the ZnO crystallinity, on the ITO substrate morphology and charge transport at the ZnO/active layer interface. The photo-physical and structural characteristics of P3HT beside ZnO interfacial layer and the photovoltaic device performances were also studied using UV–vis spectroscopy, photoluminescence (PL) and J-V characteristic. Finally, we study the interfacial stability of devices with and without ZnO interfacial layer in both normal and inverted structure OPVs. We show that under optimized sputtering conditions, higher order and orientation structure of P3HT, the ZnO thermally annealed beside active layer offers better efficiency of contact between the active layer and interfacial layer. We also show that ZnO annealed at a softening temperature of 180 °C is functional for both photovoltaic devices (rigid and plastic substrates), leading to improved performance and stability of plastic solar cell devices.  相似文献   

2.
All-polymer phototransistors consisting of bulk heterojunction (BHJ) nanolayers of electron-donating (p-type) and electron-accepting (n-type) polymers are attractive candidates for applications such as light-sensing and light-switching devices. Here, we report efficient green-light-sensing all-polymer phototransistors based on BHJ layers of poly(3-hexylthiophene) (P3HT) and poly[(4,8-bis(2-ethylhexyloxy)-benzo[1,2-b:4,5-b]-dithiophene)-2,6-diyl-alt-(N-2-ethylhexylthieno[3,4-c]pyrrole-4,6-dione)-2,6-diyl]] (PBDTTPD) polymers. To understand the phototransistor characteristics, all devices were exposed to a green monochromatic light (555 nm) with different incident power intensities. The results showed that the P3HT:PBDTTPD (80:20) layer are more advantageous than the pristine P3HT layers in terms of efficient charge separation and transport. The responsivity value of devices with the P3HT:PBDTTPD (80:20) layers reached 33.3 A/W, which is 25 and 28 times higher than those obtained with pristine the pristine P3HT or P3HT:PBDTTPD (60:40) layers. The enhanced device performance of the P3HT:PBDTTPD (80:20) phototransistors is attributable to an efficient charge separation, prevalent edge-on chain orientation, and relatively smoother surface morphology, which might facilitate improved charge transport in the lateral direction.  相似文献   

3.
We have investigated charge transport properties of bulk-heterojunction (BH) solar cells in which P3HT (Poly(3-hexylthiophene)) and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) are used as the active layer, by using the displacement current measurement (DCM) method. In order to investigate the charge transport properties of the BH solar cells, we fabricated a dedicated device that consists of P3HT and PCBM, and used the DCM method to measure the charge distribution of the devices with different composition ratios of P3HT and PCBM. DCM data suggested that a BH film with 50 wt% of PCBM exhibits a preferable charge transport property suited for BH solar cells. We confirmed that the DCM results are consistent with the measured performance of the BH solar cells, indicating that the DCM method is a simple and effective method for optimizing the structure of BH solar cells as well as other electronic devices composed of binary materials.  相似文献   

4.
In this study, we fabricated an ultraviolet (UV) photodetector by blending a hybrid photoactive layer (HPL) that is composed of a hybrid structure containing Carbon Quantum Dots (CQDs) and Zinc Oxide Nanorods (ZnO NRs). To observe the effective photo-inducing abilities of CQDs and ZnO NRs, we analyzed the electrical properties of a UV photodetector using an HPL of CQDs/ZnO NRs. Under an illumination of 365 nm UV light with an intensity of 1 mW/cm2, the UV photodetector exhibited a high detectivity of 8.33 × 1012 Jones, which is higher than that of a UV photodetector using a HPL of blended poly-n-vinylcarbazole (PVK) and ZnO NRs. Experimental results show that an HPL of blended CQDs/ZnO NRs can induce efficient charge extraction from CQDs and ZnO NRs. In addition, CQDs act as charge controllers that enable hole-electron separation in the device upon UV illumination. These results indicate that synthesized CQDs can substitute for a charge transport polymer (i.e., PVK) and that a UV photodetector using CQDs can exhibit high detectivity.  相似文献   

5.
Inefficient light absorption and inefficient charge separation are considered as two major impediments for the efficiency improvement in bulk heterojunction organic solar cells (BHJ OSCs). In this work, we report the simultaneous role of modified electron transport layer (ETL) and photoactive layers on the performance of poly (3-hexylthiophene), [6, 6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM) BHJ OSCs. To modify the ETL, composite of reduced graphene oxide (rGO) (0.4 wt %) and ZnO nanoparticles (NPs) was used, which resulted in efficiency enhancement from 3.13 to 3.81%, as compared to a value of 3.13% when only ZnO was used. Thereafter, to improve upon the optical absorption properties, the photoactive layer is modified by embedding nanoparticles and nanorods of Ag and Au into it. The size of Ag and Au nanoparticles were chosen to be 50 nm while the dimensions of Ag and Au nanorods were so controlled to obtain length of approx. 50 nm and width of ∼10 nm. All the devices were fabricated in inverted geometry and 20 wt% nanostructures embedded devices showed the best results. For Ag and Au NPs embedded devices, the maximum power conversion efficiency was found to be 4.21% and 4.44%, respectively. On the other hand, for Ag and Au NRs embedded devices, the maximum efficiency was 4.37% and 4.85%, respectively. For comparison, the control devices where no nanostructures were embedded, which shows efficiency of 3.81%. Therefore, an overall enhancement in efficiency was nearly 1.21 and 1.1, 1.16, 1.14, 1.27 fold after modifying ETL as well as the active layer. The reasons for performance improvement were ascribed to better charge extraction properties of ETL, enhanced light absorption due to localized surface plasmon resonance (LSPR) and efficient light scattering by the nanostructures and improved global mobilities.  相似文献   

6.
Anomalous transport is ever-present in many disordered organic semiconductor materials. The long-tail behavior observed in the transient photocurrent is a manifestation of anomalous transport. Owing to the fact that anomalous transport has dispersive and non-Gaussian transport dynamics, thus anomalous transport cannot be adequately described by the standard drift-diffusion equation which is a framework commonly used to model normal diffusive transport. In this work, we generalized the standard drift-diffusion equation to time fractional drift-diffusion equation (TFDDE) using the fractional calculus approach to model the anomalous transport in the regio-random poly(3-hexylthiophene) (RRa-P3HT) and regio-regular poly(3-hexylthiophene) (RR-P3HT). Physical elucidation of TFDDE is given by stressing how the influence of the multiple-trapping mechanisms and energy disorder lead to the long-tail behavior in the transient photocurrent curves. TFDDE is solved numerically using finite difference scheme to obtain the profiles of charge carriers density evolution and hence to reproduce the corresponding transient photocurrents of RRa-P3HT and RR-P3HT. Poisson solver is also included in the model to account for the fluctuation of localized electric field due to the evolution of charge carriers. It is found that charge carriers acquire additional energy from high electric field that helps them to escape from the trap centers more easily and then propagating at higher velocity, which yields higher transient current. Higher concentration of charge carriers can be generated at higher light intensity and they can occupy energy levels close to the mobility edge, where charge carriers will encounter smaller capturing rate and hop at a longer length in each hopping event. Thus, the transport dynamic of charge carriers at high light intensity is less dispersive than that of the low light intensity. Besides, the transport dynamic of charge carriers in RR-P3HT is relatively less dispersive and has higher mobility than that of the RRa-P3HT since RR-P3HT has lower capturing rate and is less energy disordered.  相似文献   

7.
We present the first active visible blind ultraviolet (UV) photodetector based on zinc oxide (ZnO) nanostructured AlGaN/GaN high electron mobility transistors (HEMTs). The ZnO nanorods (NRs) are selectively grown on the gate area by using hydrothermal method. It is shown that ZnO nanorod (NR)-gated UV detectors exhibit much superior performance in terms of response speed and recovery time to those of seed-layer-gated detectors. It is also found that the best response speed (~10 and~190 ms) and responsivity (~1.1×105 A/W) were observed from detectors of the shortest gate length of 2 µm among our NR-gated devices of three different gate dimensions, and this responsivity is about one order higher than the best performance of ZnO NR-based UV detectors reported to date.  相似文献   

8.
An inverted organic bulk-heterojunction solar cell containing a zinc oxide (ZnO) based electron collection layer with a structure of ITO/ZnO/[6,6]-phenyl C61 butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene): poly(4-styrene sulfonic acid)/Au (ZnO cell) was fabricated. We examined the relationship between the heating temperature of the ZnO layer and the device performance under irradiation by simulated sunlight while cutting the UV light. The effects of the UV light contained in simulated sunlight were investigated by photocurrent–voltage (IV) and alternating current impedance spectroscopy (IS) measurements. When the ZnO cells were irradiated with simulated sunlight, they exhibited a maximum power conversion efficiency (PCE) of over 3%, which hardly varied with the heating temperature of ZnO layers treated at 250 °C, 350 °C, and 450 °C. In contrast, when the ZnO cells were irradiated with simulated sunlight without UV content, their photovoltaic characteristics were very different. In the case of the cell with ZnO prepared by heating at 250 °C, PCE of 2.7% was maintained even under continuous irradiation with simulated sunlight without UV. However, for the cells with ZnO prepared by heating at 350 °C and 450 °C, the shapes of the IV curves changed with the UV-cut light irradiation time, accompanying an increase in their series resistance. Overall, after UV-cut light irradiation for 1 h, the PCE of the cell with ZnO prepared by heating at 350 °C decreased to 1.80%, while that of the cell with ZnO prepared by heating at 450 °C fell to 1.35%. The photo IS investigations suggested that this performance change was responsible for the formation of charge-trapping sites at the ZnO/PCBM:P3HT interface which act as recombination centers for photo-produced charges in the PCBM:P3HT layer.  相似文献   

9.
Perovskite solar cells (PSCs) with high efficiency and high stability are still a challenge to produce although remarkable successes have been achieved since they were first reported in 2009. One strategy to effectively improve both the performance as well as the stability is to introduce an interfacial layer between perovskite and hole transport material. Herein, we report a charge-separated (CS) organic semiconductor as the interfacial layer that forms cascaded energy levels between perovskite and hole transportation material. This CS semiconductor displays high hole and electron mobilities by converting long-lived CS states in solution into permanent polarons (charged carriers) in films. Doping with iodinehydride is able to improve the surface morphology of the CS semiconductor layer. Our devices with an iodinehydride-doped CS semiconductor layer exhibit an efficiency of 17.87%, which is increased by ~25% in comparison with 14.24% of the reference devices that have no interfacial layer. This additional CS semiconductor layer also enhances the unsealed device stability by maintaining 90% of initial PCE, while the reference devices degraded by 35% at a relative humidity of 20–30%, temperature of 25 °C and ambient light for 240 h. This result reveals that the utilization of CS states is an alternative approach to construct high charge transport organic semiconductors. An interfacial semiconductor with proper energy level and a matching hole transport mobility can improve the hole extraction, speed up hole transport and suppress charge recombination of PSCs, and thus may be an effective strategy to improve their efficiency and stability.  相似文献   

10.
In the present work, we investigated effects of the dielectric/semiconductor interface modification on the photoelectrical properties of phototransistors comprising a UV responsive semiconductor blend 2,7-dipentyl-[1]benzothieno[2,3-b][1]benzothiophene (C5-BTBT) and a linear unsaturated polyester (L-upe). Using various self-assembly monolayers with different end-groups at the dielectric/semiconductor interface we modulated the drain photocurrent and response times under the UV light illumination of phototransistors. Treatment of the SiO2 dielectric surface with organosilanes led to the variation of the max mobility in the dark 0.10–0.18 cm2 V−1 s−1 and under UV light 0.08–0.50 cm2 V−1 s−1. Interestingly, detailed crystal structure analysis using 2D X-ray diffraction and photoelectrical characterization revealed that mobility in the dark predominantly depends on the alignment of C5-BTBT crystallites at the interface. Under UV light, the mobility increased with the electron withdrawing/donating nature of the SAM end-functional group. Additionally, chemical modification of the SiO2 dielectric surface increased photocurrent relaxation/decay times upon UV light removal while retaining fast response times when exposed to UV light, which enhanced memory properties of fabricated phototransistors (fast UV response = writing and long relaxation = long data storage).  相似文献   

11.
12.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

13.
High mobility bipolar charge carrier transport in organic field-effect transistors (OFETs) can be enabled by a molecular passivation layer and selective electrode materials. Using tetratetracontane as passivation layer bipolar transport was realised in the organic semiconductors copper-phthalocyanine, diindenoperylene, pentacene, TIPS-pentacene and sexithiophene and mobilities of up to 0.1 cm2/V s were achieved for both electrons and holes. Furthermore, the trap and injection behaviour was analysed leading to a more general understanding of the transport levels of the used molecular semiconductors and their limitations for electron and hole transport in OFETs. With this knowledge the transistor operation can be further improved by applying two different electrode materials and a light-emitting transistor was demonstrated.Additionally, the effect of illumination on organic field-effect transistors was investigated for unipolar and bipolar devices. We find that the behaviour of photo-excited electrons and holes depends on the interface between the insulator and the semiconductor and the choice of contact materials. Whereas filling of electron traps by photo-generated charges and the related accumulation field are the reason for changes in charge carrier transport upon illumination without passivation layer, both types of charge carriers can be transported also in unipolar OFETs, if a passivation layer is present.  相似文献   

14.
《Organic Electronics》2007,8(5):606-614
Ultraviolet photoelectron spectroscopy (UPS) was used to determine the energy level alignment at organic–organic conductor–semiconductor and semiconductor–semiconductor hetero-interfaces that are relevant for organic optoelectronic devices. Such interfaces were formed by in situ vacuum sublimation of small molecular materials [C60 and pentacene (PEN)] and ex situ spin-coating of poly(3-hexylthiophene) (P3HT), all on the common substrate poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). We found that the deposition sequence had a significant impact on the interface energetics. The hole injection barrier (HIB) of C60 on PEDOT:PSS could be changed from 1.0 eV (moderate hole injection) to 1.7 eV (good electron injection) by introducing a layer of P3HT. The HIB of P3HT/PEDOT:PSS was increased by 0.35 eV due to an interfacial PEN layer. However, PEN deposited on PEDOT:PSS and P3HT/PEDOT:PSS exhibited the same value. These observations are explained by material-dependent dipoles at the interfaces towards PEDOT:PSS and substrate dependent inter-molecular conformation.  相似文献   

15.
Zinc oxide (ZnO) devices represent an alternative in the semiconductor technology for their application in resistive switching memory devices and ultraviolet (UV) photodetectors due to their chemical and electrical properties. The multilevel current amplification of ZnO rods RRAM devices induced by UV light illumination is reported here for the first time. The resistive switching mechanism underlying in this type of devices is attributed to the formation of conductive filaments composed of oxygen vacancies. The analysis of the photodecay processes carried out on the devices fabricated with different electrodes shows that the type of interface (Ag/ZnO and Au/ZnO) affects the surface barrier height, which influences the photodecay rate. It is shown that by applying UV light, higher relaxation constants (slower photodecay rates) are obtained and lead to multilevel current amplification behavior.  相似文献   

16.
Photocrosslinkable bromine‐functionalized poly(3‐hexylthiophene) (P3HT‐Br) copolymers designed for application in solution‐processed organic photovoltaics are prepared by copolymerization of 2‐bromo‐3‐(6‐bromohexyl) thiophene and 2‐bromo‐3‐hexylthiophene. The monomer ratio is carefully controlled to achieve a UV photocrosslinkable layer while retaining the π–π stacking feature of the conjugated polymers. The new materials are used as electron donors in both bulk heterojunction (BHJ) and bilayer type photovoltaic devices. Unlike devices prepared from either P3HT:PCBM blend or P3HT‐Br:PCBM blend without UV treatment, photocrosslinked P3HT‐Br:PCBM devices are stable even when annealed for two days at the elevated temperature of 150 °C as the nanophase separated morphology of the bulk heterojunction is stabilized as confirmed by optical microscopy and grazing incidence wide angle X‐ray scattering (GIWAXS). When applied to solution‐processed bilayer devices, the photocrosslinkable materials show high power conversion efficiencies (~2%) and excellent thermal stability (3 days at 150 °C). Such performance, one of the highest obtained for a bilayer device fabricated by solution processing, is achieved as crosslinking does not disturb the π–π stacking of the polymer as confirmed by GIWAXS measurements. These novel photocrosslinkable materials provide ready access to efficient bilayer devices thus enabling the fundamental study of photophysical characteristics, charge generation, and transport across a well‐defined interface.  相似文献   

17.
We have demonstrated color-stable and highly efficient simplified white phosphorescent organic light-emitting diodes. The key feature is the use of a novel approach to confine the distribution of charge carriers and excitons across the whole blue emission layer. The resulting two-color white device has the maximum power efficiency and current efficiency of 45.5 lm/W and 43.5 cd/A with a very low color shift over a wide range of luminance. By systematically investigating the working mechanisms, we found that the ambipolar charge carrier transport ability of co-host layer which ensures the distribution of excitons to form in the whole blue emission layer was the critical factors for constructing color-stable white devices. Our results show that simplified white devices based on two organic materials achieving excellent color stability are possible.  相似文献   

18.
It is well known that organic solar cells (OSCs) with inverted geometry have not only demonstrated a better stability and longer device life time but also have shown improved power conversion efficiency (PCE). Recent studies exhibit that incorporation of metal and/or semiconducting nanoparticles (NPs) can further increase the PCE for OSCs. In this present work, we have synthesized SiO2 NPs of various sizes (25, 50, 75 and 100 nm) using the modified Stober method and incorporated them into P3HT:PCBM photoactive layer and ZnO based electron transport layer (ETL) in order to investigate the light trapping effects in an OSC. Absorption studies have shown a considerable increase in photo absorption in both cases. The fabricated devices demonstrated 13% increase in the PCE when SiO2 NPs are incorporated in P3HT:PCBM photoactive layer, whereas PCE was increased by 20% when SiO2 NPs are incorporated in ZnO based ETL. Mott–Schottky analysis and impedance spectroscopy measurements have been carried out to determine the depletion width and global mobility for both the devices. The possible reason for PCE enhancement and the role of SiO2 NPs in active layer and ZnO ETL are explained on the basis of the results obtained from Mott–Schottky analysis and impedance spectroscopy measurements.  相似文献   

19.
Chalcogenide-based semiconductors have recently emerged as promising candidates for optoelectronic applications, mainly benefiting from their facile and low-cost processability, chemical versatility, and tunable optoelectronic properties. Despite the recent success of chalcogenide-based thin-film photovoltaics, they have been barely leveraged in photodetection, mainly due to the complicated charge transport related to the trap states. In addition, most of the chalcogenide photodetectors are reported for broadband, visible photodetection, which is facile but lacks of impact for real applications. However, it is also possible to modulate the charge carrier dynamics of chalcogenide-based materials, and devise novel devices, which can possess extra compelling features. These possibilities provide strong incentives for a detailed study on the chalcogenides-based narrowband photodetectors, which are achieved by a filterless, charge collection narrowing strategy. The optimized narrowband photodetectors also exhibit extremely fast-response (≈240 ns), relatively low dark current and noise, large linear dynamic range, and most importantly tunable spectral discrimination covering the whole range from UV to NIR. These devices also demonstrate great potential for imaging and communication.  相似文献   

20.
The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号