首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is known that the key indicators of batch processes are controlled by conventional proportional–integral–derivative (PID) strategies from the view of one-dimensional (1D) framework. Under such conditions, the information among batches cannot be used sufficiently; meanwhile, the repetitive disturbances also cannot be handled well. In order to deal with such situations, a novel two-dimensional PID controller optimized by two-dimensional model predictive iterative learning control (2D-PID-MPILC) is proposed. The contributions of this paper can be summarized as follows. First, a novel two-dimensional PID (2D-PID) controller is developed by combining the advantages of a PID-type iterative learning control (PIDILC) strategy and the conventional PID method. This novel 2D-PID controller overcomes the aforementioned disadvantages and extends the conventional PID algorithm from one-dimension to two-dimensions. Second, the tuning guidelines of the presented 2D-PID controller are obtained from the two-dimensional model predictive control iterative control (2D-MPILC) method. Thus, the proposed approach inherits the advantages of both PID control, PIDILC strategy, and 2D-MPILC scheme. The superiority of the proposed method is verified by the case study on the injection modelling process.  相似文献   

2.
Based on the two-dimensional (2D) systemtheory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) andmodel predictive control(MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By minimizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (Ptype) ILC despite the model error and disturbances.  相似文献   

3.
基于T-S模糊模型的间歇过程的迭代学习容错控制   总被引:3,自引:1,他引:2       下载免费PDF全文
间歇过程不仅具有强非线性,同时还会受到诸如执行器等故障影响,研究非线性间歇过程在具有故障的情况下依然稳定运行至关重要。针对执行器增益故障及系统所具有的强非线性,提出一种新的基于间歇过程的T-S模糊模型的复合迭代学习容错控制方法。首先根据间歇过程的非线性模型,利用扇区非线性方法建立其T-S模糊故障模型,再利用间歇过程的二维特性与重复特性,在2D系统理论框架内,设计2D复合ILC容错控制器,进而构建此T-S模糊模型的等价二维Rosser模型,接着利用Lyapunov方法给出系统稳定充分条件并求解控制器增益。针对强非线性的连续搅拌釜进行仿真,结果表明所提出方法具有可行性与有效性。  相似文献   

4.
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial appli-cation show that the proposed ILMPC method is effective for a class of continuous/batch processes.  相似文献   

5.
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.  相似文献   

6.
一种间歇过程产品质量迭代学习控制策略   总被引:5,自引:3,他引:5       下载免费PDF全文
贾立  施继平  邱铭森 《化工学报》2009,60(8):2017-2023
针对基于迭代学习控制的间歇过程产品质量优化控制算法难以进行收敛性分析的难题,以数据驱动的神经模糊模型为基础,提出一种新颖间歇过程的产品质量迭代学习控制方法。通过在优化算法中加入了新的约束条件,改变了最优解的搜索空间范围,从而使产品质量在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明。在理论研究的基础上,将提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。  相似文献   

7.
In this paper, we propose a model predictive control (MPC) technique combined with iterative learning control (ILC), called the iterative learning model predictive control (ILMPC), for constrained multivariable control of batch processes. Although the general ILC makes the outputs converge to reference trajectories under model uncertainty, it uses open-loop control within a batch; thus, it cannot reject real-time disturbances. The MPC algorithm shows identical performance for all batches, and it highly depends on model quality because it does not use previous batch information. We integrate the advantages of the two algorithms. The proposed ILMPC formulation is based on general MPC and incorporates an iterative learning function into MPC. Thus, it is easy to handle various issues for which the general MPC is suitable, such as constraints, time-varying systems, disturbances, and stochastic characteristics. Simulation examples are provided to show the effectiveness of the proposed ILMPC.  相似文献   

8.
9.
时变间歇过程的2D-PID自适应控制方法   总被引:3,自引:3,他引:0       下载免费PDF全文
王志文  刘毅  高增梁 《化工学报》2016,67(3):991-997
针对间歇过程存在的参数时变问题,提出一种基于二维PID(2D-PID)迭代学习框架的自适应控制方法。首先,通过粒子群优化算法快速获取初始的2D-PID控制参数。在批次内,采用自调整神经元PID控制器对其进行在线自适应调节。进一步,考虑批次间的重复特性,通过PID型迭代学习控制,以利用历史批次的信息来修正当前批次的调节变量,最终提高控制性能。通过间歇发酵过程的仿真和比较研究,验证了所提出方法的有效性。  相似文献   

10.
贾立  施继平  邱铭森 《化工学报》2010,61(1):116-123
针对基于迭代学习控制的间歇过程产品质量优化控制算法难以进行收敛性分析的难题,并且考虑到实际生产中存在外部干扰和不确定因素的影响,本文对间歇过程模型参数动态更新问题进行了分析,建立了间歇生产过程产品质量的神经模糊(NF)预测模型,提出了一种新颖的批次轴参数自适应调节算法。在此基础上,构造了一种基于数据驱动的间歇生产过程产品质量迭代学习控制算法,并对优化问题的收敛性给出了严格的数学证明。最后,将本文提出的算法用于一类典型的间歇过程终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。  相似文献   

11.
基于广义预测控制的间歇生产迭代优化控制   总被引:2,自引:1,他引:1  
针对间歇生产,提出了一种基于广义预测控制的批次迭代优化控制策略--BGPC,在间歇过程中引入批次间优化的思想,将迭代学习控制ILC和广义预测控制GPC相结合,在GPC实时结构参数辨识的基础上利用前面批次的模型预测误差修正当前批次的模型预测值.该算法能够有效地克服模型失配、扰动和系统参数变化等情况.文章最后以一个数值例子和间歇反应器为对象进行仿真试验,验证了该算法是有效的.  相似文献   

12.
基于MPLS的间歇过程终点质量迭代优化控制   总被引:2,自引:0,他引:2  
提出了多向偏最小二乘(MPLS)模型和迭代学习控制相结合的方法,实现间歇过程终点时刻产品质量指标的控制.利用间歇过程的重复特性,根据前一批次的终点质量偏差调整下-批次控制变量的轨迹,从而使质量指标逐步接近于理想指标.本文提出的方法可以有效地消除由于模型误差和未知扰动引起的质量偏差.在苯乙烯间歇聚合反应模型上进行了仿真分析,验证了该方法的有效性.  相似文献   

13.
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained. A rigorous theorem is proposed, to prove the convergence of tracking error under ILC. The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.  相似文献   

14.
A guaranteed cost control scheme is proposed for batch processes described by a two‐dimensional (2‐D) system with uncertainties and interval time‐varying delay. First, a 2‐D controller, which includes a robust feedback control to ensure performances over time and an iterative learning control to improve the tracking performance from cycle to cycle, is formulated. The guaranteed cost law concept of the proposed 2‐D controller is then introduced. Subsequently, by introducing the Lyapunov–Krasovskii function and adding a differential inequality to the Lyapunov function for the 2‐D system, sufficient conditions for the existence of the robust guaranteed cost controller are derived in terms of matrix inequalities. A design procedure for the controller is also presented. Furthermore, a convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the optimal guaranteed cost controller that minimizes the upper bound of the closed‐loop system cost. The proposed control law can stabilize the closed‐loop system as well as guarantee H performance level and a cost function with upper bounds for all admissible uncertainties. The results can be easily extended to the constant delay case. Finally, an illustrative example is given to demonstrate the effectiveness and advantages of the proposed 2‐D design approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2033–2045, 2013  相似文献   

15.
基于无约束迭代学习的间歇生产过程优化控制   总被引:1,自引:1,他引:0       下载免费PDF全文
贾立  施继平  邱铭森  俞金寿 《化工学报》2010,61(8):1889-1893
针对基于迭代学习控制的间歇过程优化控制算法难以进行收敛性分析的难题,本文基于数据驱动的神经模糊模型提出一种新颖的间歇过程无约束迭代学习控制方法,通过调节因子的变化去除了约束条件,使控制轨迹在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明。在理论研究的基础上,将本文提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径。  相似文献   

16.
An adaptive fuzzy model based predictive control (AFMBPC) approach is presented to track the desired temperature trajectories in an exothermic batch chemical reactor. The AFMBPC incorporates an adaptive fuzzy modeling framework into a model based predictive control scheme to derive analytical controller output. This approach has the flexibility to cope with different fuzzy model structures whose choice also lead to improve the controller performance. In this approach, adaptation of fuzzy models using dynamic process information is carried out to build a predictive controller, thus eliminating the determination of a predefined fixed fuzzy model based on various sets of known input-output relations. The performance of the AFMBPC is evaluated by comparing to a fixed fuzzy model based predictive controller (FFMBPC) and a conventional PID controller. The results show the better suitability of AFMBPC for the control of highly nonlinear and time varying batch chemical reactors.  相似文献   

17.
This work develops a transfer learning (TL) framework for modeling and predictive control of nonlinear systems using recurrent neural networks (RNNs) with the knowledge obtained in modeling one process transferred to another. Specifically, transfer learning uses a pretrained model developed based on a source domain as the starting point, and adapts the model to a target process with similar configurations. The generalization error for TL-based RNN (TL-RNN) is first derived to demonstrate the generalization capability on the target process. The theoretical error bound that depends on model capacity and the discrepancy between source and target domains is then utilized to guide the development of pretrained models for improved model transferability. Subsequently, the TL-RNN model is utilized as the prediction model in model predictive controller (MPC) for the target process. Finally, the simulation study of chemical reactors via Aspen Plus Dynamics is used to demonstrate the benefits of transfer learning.  相似文献   

18.
The performance assessment of linear time‐invariant batch processes when iterative learning control (ILC) is implemented has been discussed. Previous literatures show that conventional performance assessment cannot be directly applied to batch processes due to the nature of batch operations. Chen and Kong have suggested a new method to assess the control performance of batch processes using optimal ILC as the benchmark. In their work, ILC controllers are assumed to affect either stochastic or deterministic performance but without considering their interaction. This work elaborates the controllers effects on both stochastic and deterministic control performance of batch processes. It is shown that the optimal solution based on the minimum variance control law has a trade‐off between deterministic and stochastic performance, which can be shown by a trade‐off curve. Furthermore, a method is proposed to estimate this curve from routine operating data, against which the performance of ILC controllers can be assessed. Simulation studies are conducted to verify the proposed method. © 2012 American Institute of Chemical Engineers AIChE J, 59: 457–464, 2013  相似文献   

19.
The paper presents an approach to improve the product quality from batch-to-batch by exploiting the repetitive nature of batch processes to update the operating trajectories using process knowledge obtained from previous runs. The data based methodology is focused on using the linear time varying (LTV) perturbation model in an iterative learning control (ILC) framework to provide a convergent batch-to-batch improvement of the process performance indicator. The major contribution of this work is the development of a novel hierarchical ILC (HILC) scheme for systematic design of the supersaturation controller (SSC) of seeded batch cooling crystallizers. The HILC is used to determine the required supersaturation setpoint for the SSC and the corresponding temperature trajectory required to produce crystals with desired end-point property. The performance and robustness of these approaches are evaluated through simulation case studies. These results demonstrate the potential of the ILC approaches for controlling batch processes without rigorous process models.  相似文献   

20.
A multistep model predictive control (MPC) strategy based on dynamically recurrent radial basis function networks (RBFNs) is proposed for single-input single-output (SISO) control of uncertain nonlinear processes. The control system consists of two automatically configured RBFNs, a trained network representing the plant model and a network with on-line learning to function as controller. The automatic configuration and learning of the networks is carried out by using a hierarchically self-organizing learning algorithm. This control strategy is structurally simple and computationally efficient since a single output node of each RBFN is configured to provide multistep predictions for plant output and controller. The performance of the proposed RBFNMPC strategy is evaluated by applying to two unstable nonlinear chemical processes, a chemical reactor and a biochemical reactor, and also a stable polymerization reactor. Further, the results of the RBFNMPC is compared with similar RBFN model based control strategies and also with well tuned PID/PI controller. The results show the better performance of the proposed RBFNMPC for the control of open-loop unstable nonlinear processes that exhibit multiple steady-state behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号