首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
An ideal solid oxide fuel cell (SOFC) cathode should meet multiple requirements, i.e., high activity for oxygen reduction reaction (ORR), good conductivity, favorable stability, and sound thermo-mechanical/chemical compatibility with electrolyte, while it is very challenging to achieve all these requirements based on a single-phase material. Herein, a cost-effective multi-phase nanocomposite, facilely synthesized through smart self-assembly at high temperature, is developed as a near-ideal cathode of intermediate-temperature SOFCs, showing high ORR activity (an area-specific resistance of ≈0.028 Ω cm2 and a power output of 1208 mW cm−2 at 650 °C), affordable conductivity (21.5 S cm−1 at 650 °C), favorable stability (560 h operation in single cell), excellent chemical compatibility with Sm0.2Ce0.8O1.9 electrolyte, and reduced thermal expansion coefficient (≈16.8 × 10−6 K−1). Such a nanocomposite (Sr0.9Ce0.1Fe0.8Ni0.2O3–δ) is composed of a single perovskite main phase (77.2 wt%), a Ruddlesden–Popper (RP) second phase (13.3 wt%), and surface-decorated NiO (5.8 wt%) and CeO2 (3.7 wt%) minor phases. The RP phase promotes the oxygen bulk diffusion while NiO and CeO2 nanoparticles facilitate the oxygen surface process and O2− migration from the surface to the main phase, respectively. The strong interaction between four phases in nanodomain creates a synergistic effect, leading to the superior ORR activity.  相似文献   

2.
A-site-substituted cerium orthovanadates, Ce1−x Ca x VO4, were synthesised by solid-state reactions. At room temperature, the solid solution limit in Ce1−x Ca x VO4 series is at x = 0.4125. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd with a = 7.4004 (1) and c = 6.4983 (6) ? for CeVO4. The UV–Visible absorption spectra indicated that the compounds have band gaps at room temperature in the range of 4.2–4.5 eV. Conductivity measurements were performed for the first time up to the calcium solid solution limit in both air and dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 20 mS cm−1 in air to 3 to 30 mS cm−1 in reducing atmosphere. In general, the conductivity of Ca-doped CeVO4 is higher in air but lower in a reducing atmosphere comparing to pure CeVO4. The H2/air electrochemical cell measurement indicates that the conduction of sample Ce0.7Ca0.3VO4 is electronic dominant. Samples Ce0.9Ca0.1VO4 and Ce0.8Ca0.2VO4 are redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

3.
This study investigated the photoluminescent properties of Er3+/Yb3+ and Ce3+/Er3+/Yb3+ -doped oxyfluoride glass–ceramics. The transparent oxyfluoride glass–ceramics were prepared by high temperature melting method and subsequent heat treatment. Effect of heat treatment schedules on crystallization behavior and microstructure were analyzed by differential scanning caborimetry, X-ray diffraction, infrared spectrum and scanning electron microscopy. The structure of fluoride nanocrystals indicates that the main phase in the oxyfluoride glass ceramics is CaF2 nanocrystal sized at 25 nm at the optimal crystallization temperature 600 °C for 8 h. The Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass–ceramics shows wider absorption bands comparing with Er3+/Yb3+ co-doped oxyfluoride glass–ceramics. The effective energy transfer processes from Ce3+ to Yb3+, Er3+ to Yb3+ and Ce3+ to Er3+ all can take place simultaneously. The idea of using Ce3+ together with Er3+ and Yb3+ ions could enhance the ultraviolet visible light absorption and the 960–1040 nm near infrared emission. Results of this study demonstrate that the tri-activator Ce3+/Er3+/Yb3+ materials are promising for practical application to enhance the energy efficiency of crystalline Si solar cells via spectrum modification.  相似文献   

4.
Ce0.8Sm0.2O1.9 (SDC) powder was synthesized by spray pyrolysis at 650 °C. XRD results showed that phase-pure SDC powder with an average crystallite size of 11 nm was synthesized. SDC electrolyte film was prepared by tape casting and sintered at different temperatures of 1,300, 1,400 and 1,500 °C for 2 h, respectively. The SDC electrolyte film was relatively denser and showed finer microstructure at relatively lower temperature of 1,400 °C, which might be due to the high sintering activity of the spray pyrolysis SDC powder. The ionic conductivity of the SDC electrolyte film sintered at 1,400 °C reached a maximum value of 9.5 × 10−3 S cm−1 (tested at 600 °C) with an activation energy for conduction of 0.90 eV.  相似文献   

5.
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2/NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2, and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2/NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm−2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2/NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm−2 and 600 mA cm−2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.  相似文献   

6.
《Materials Research Bulletin》2006,41(7):1378-1384
The exploration of the Li–Ti–Mg–O system, using both sol–gel technique and solid state reaction method, allowed a new phase, Li2MgTiO4, with disordered rock salt structure (a = 4.159 Å) to be synthesized. The latter is shown to be a good type I dielectric material, with a relative constant of 15 at high frequency and low dielectric loss (tanδ < 10−3) over the temperature range −60 to 160 °C. It is also observed that the sintering temperature of this phase is strongly lowered by adopting the sol–gel technique compared to solid state reaction (1150 °C instead of 1300 °C). Finally we show that this phase exhibits cationic conductivity above 400 °C (σ600 °C = 9 × 10−5 S cm−1).  相似文献   

7.
Flame spray pyrolysis, which produces ultrafine particles, was applied to the synthesis of Ce1−xGdxO2−x/2 solid solutions by substituting Gd from a mole fraction of 0–0.40. The solubility limit of Gd in the Ce1−xGdxO2−x/2 solid solution produced by flame spray pyrolysis was between 0.25 and 0.30, which is consistent with the reported value. The as-prepared Ce1−xGdxO2−x/2 particles had a square morphology and a nanometer range in the equivalent diameter. The small particle size made it possible to reduce the sintering temperature of the Ce1−xGdxO2−x/2 solid solution from 1650 °C to 1400 °C for the ceria-based solid electrolytes produced by the solid state preparation. The maximum ionic conductivity was achieved when the mole fraction of Gd was 0.25. The mole fraction for the highest ionic conductivity was the same as the particles produced by hydrothermal synthesis. However, the ionic conductivity of the Ce1−xGdxO2−x/2 prepared by the flame spray pyrolysis (1.01 × 10−2 S/cm at 600 °C) was higher than that prepared by the hydrothermal synthesis (7.53 × 10−3 S/cm at 600 °C).  相似文献   

8.
The parasitic Li dendrite formation and retarded ion diffusion dynamics inhibit the deployment of solid-state batteries (SSBs) at high areal capacity loadings. Here, we present the modular design of the Li+ percolating network by grafting the ionic-conductive polyether amine (PEA) at the multiple scales: the PEA modified zinc hydroxystannate (PEA@ZHS) (flame retardant units) and polyamide 6 (mechanical rigid units) are coherently introduced to optimize the PEO-based solid electrolyte (PX-PEA@ZHS) with the Young's modulus (3.41 GPa), ionic conductivity (4.29 × 10−4 S cm−1 at 55 °C) and flame retardancy (22% reduction of heat release rate); on the other hand, PEA molecules are grafted onto the acetylene black additive to establish the dual conductive network, endowing two orders of magnitude increase of ionic conductivity for the high-compaction cathodes. The as-integrated symmetric cell exhibits a critical current density up to 0.8 mA cm−2 and cycling endurance for 1000 h at 0.2 mA cm−2; upon the SSBs assembly with the record high loading of LiFePO4 (12.4 mg cm−2), the high-areal-capacity, cycling stability as well as the extreme temperature endurance till 110 °C are simultaneously realized, which inspire the rational design of commercially feasible, energy-dense, flame-resistance energy storage prototype.  相似文献   

9.
The insufficient ionic conductivity, limited lithium-ion transference number (tLi+), and high interfacial impedance severely hinder the practical application of quasi-solid polymer electrolytes (QSPEs). Here, a sandwich-structured polyacrylonitrile (PAN) based QSPE is constructedin which MXene-SiO2 nanosheets act as a functional filler to facilitate the rapid transfer of lithium-ion in the QSPE, and a polymer and plastic crystalline electrolyte (PPCE) interface modification layer is coated on the surface of the PAN-based QSPE of 3 wt.% MXene-SiO2 (SS-PPCE/PAN-3%) to reduce interfacial impedance. Consequently, the synthesized SS-PPCE/PAN-3% QSPE delivers a promising ionic conductivity of ≈1.7 mS cm−1 at 30 °C, a satisfactory tLi+ of 0.51, and a low interfacial impedance. As expected, the assembled Li symmetric battery with SS-PPCE/PAN-3% QSPE can stably cycle more than 1550 h at 0.2 mA cm−2. The Li||LiFePO4 quasi-solid-state lithium metal battery (QSSLMB) of this QSPE exhibits a high capacity retention of 81.5% after 300 cycles at 1.0 C and at RT. Even under the high-loading cathode (LiFePO4 ≈ 10.0 mg cm−2) and RT, the QSSLMB achieves a superior area capacity and good cycling performance. Besides, the assembled high voltage Li||NMC811(loading ≈ 7.1 mg cm−2) QSSLMB has potential applications in high-energy fields.  相似文献   

10.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

11.
Solid-state proton conductors based on the use of metal–organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 anions shows superprotonic conductivity (6.3 × 10−2 S cm−1) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/N H···O distances below 2.6 Å.  相似文献   

12.
《Materials Letters》2005,59(19-20):2408-2411
The A-site deficient perovskite Nd2/3TiO3  δ was synthesized under an H2–CO2 gas mixture. The sample was found to have slight oxygen deficiency of δ∼0.012. The crystal structure was assigned to a double perovskite structure with orthorhombic space group Pmmm, as in the case of La2/3TiO3  δ. Electrical conductivity measurement has also been performed. The temperature dependence of conductivity shows that electronic transport in Nd2/3TiO2.988 is well described by Emin–Holstein adiabatic small polaron model. The polaron density extracted from the conductivity measurement is ∼1.96 × 1020 cm 3. This result agrees well with nominal polaron density for Nd2/3TiO2.988, ∼2.1 × 1020cm 3. We have also derived important quantities for transport in Nd2/3TiO2.988.  相似文献   

13.
Ni  Hao  Yang  Yang  Tian  Yunfeng  Wang  Xinxin  Shen  Shuanglin  Zheng  Keqing  Khan  Majid  Wang  Shaorong  Ling  Yihan 《Journal of Materials Science》2021,56(35):19651-19662

Protonic ceramic fuel cells (PCFCs) can use hydrogen and hydrocarbon fuels to generate electricity with good performance and anti-cooking resistance. Herein, a novel dual-phase perovskite oxide BaCe0.5Fe0.4Ni0.1O3-δ (BCFN) with BaCe0.5Fe0.5O3-δ (BCF) as one reference was synthesized, characterized and then evaluated as the symmetrical electrodes for PCFCs. Both BCF and BCFN can be self-assembled into an orthorhombic cerium-rich oxide phase and a cubic iron-rich oxide phase after calcined at 1000 °C and show good redox stability. BCFN shows much better electrical conductivity and lower area specific resistance than BCF. Applying BCF and BCFN as symmetrical electrodes for PCFCs with the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte supporting, the cell performance with BCFN symmetrical electrode is almost twice (141 mW·cm2 at 700 °C) than those with BCF symmetrical electrode, and the electrode polarization resistances are also reduced from 0.7 to 0.5 Ω·cm2 using humidified H2. The preliminary experimental results can demonstrate that dual-phase perovskite oxides with nanoparticle in situ precipitation are very promising symmetrical electrodes for protonic ceramic fuel cells.

  相似文献   

14.
Sodium metal battery is supposed to be a propitious technology for high-energy storage application owing to the advantages of natural abundance and low cost. Unfortunately, the uncontrollable dendrite growth critically hampers its practical implementation. Herein, an inorganic/organic hybrid layer of NaF/C F/CC on the surface of Na foil (IOHL-Na) is designed and synthesized through the in situ reaction of polyvinylidene fluoride (PVDF) and metallic sodium. This protective layer possesses satisfactory Young's modulus, good kinetic property, and sodiophilicity, which can distinctly stabilize Na metal anode. As a result, the symmetric IOHL-Na cell achieves a lifespan of 770 h at 1 mAh cm−2/1 mA cm−2 in carbonate electrolyte. The assembled full battery of IOHL-Na||Na3V2(PO4)3 delivers a high discharge capacity of 85 mAh g−1 at 10 C after 600 cycles under ambient temperature. Furthermore, the IOHL-Na||Na3V2(PO4)3 cell still can steadily operate at 10 C for 600 cycles at 55 °C. And when testing at an ultralow temperature of −40 °C, the full cell achieves 40 mAh g−1 at 0.5 C with a prolonged lifespan of 450 cycles. This work offers a new approach to protect the metal sodium anode without dendrite growth under wide temperatures.  相似文献   

15.
The thermoelectric (TE) performance of organic materials is limited by the coupling of Seebeck coefficient and electrical conductivity. Herein a new strategy is reported to boost the Seebeck coefficient of conjugated polymer without significantly reducing the electrical conductivity by incorporation of an ionic additive DPPNMe3Br . The doped polymer PDPP - EDOT thin film exhibits high electrical conductivity up to 1377 ± 109 S cm−1 but low Seebeck coefficient below 30 µV K−1 and a maximum power factor of 59 ± 10 µW m−1 K−2. Interestingly, incorporation of small amount (at a molar ratio of 1:30) of DPPNMe3Br into PDPP - EDOT results in the significant enhancement of Seebeck coefficient along with the slight decrease of electrical conductivity after doping. Consequently, the power factor (PF) is boosted to 571 ± 38 µW m−1 K−2 and ZT reaches 0.28 ± 0.02 at 130 °C, which is among the highest for the reported organic TE materials. Based on the theoretical calculation, it is assumed that the enhancement of TE performance for the doped PDPP - EDOT by DPPNMe3Br is mainly attributed to the increase of energetic disorder for PDPP - EDOT .  相似文献   

16.
High proton conductivity is reported for unhumidified ammonium borosulfate, NH4[B(SO4)2], a solid acid coordination polymer that contains 1D, hydrogen-bonded NH4+···1[B(SO4)4/2] chains. NH4[B(SO4)2] is thermally stable to 320 °C and is amenable to sintering into monolithic, polycrystalline discs at 200 °C and about 300 MPa of uniaxial pressure. Impedance spectroscopy measurements reveal ionic conductivities for sintered ammonium borosulfate of 0.1 mS cm−1 at 25 °C and up to 10 mS cm−1 at 180 °C in ambient air. No superprotonic transition is observed in the temperature range of 25–180 °C. Ab initio molecular dynamics simulations show these high conductivities are aided by free rotation of the NH4+ units and significant gyrational mobility of the SO4 tetrahedra, which, in turn, provide facile pathways for proton locomotion. High conductivities, a wide operational temperature window, and tolerance to both ambient and anhydrous conditions make NH4[B(SO4)]2 an attractive candidate electrolyte for intermediate-temperature hydrogen fuel cells that may enable operation at temperatures as high as 300 °C without active humidification.  相似文献   

17.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

18.
Seawater is the most abundant natural water resource in the world, which is an inexhaustible and low-cost feedstock for hydrogen production by alkaline water electrolysis. It is appearling to develop robust and stable electrocatalysts for alkaline seawater electrolysis. However, the development of seawater electrolysis is seriously impeded by anodic chloride corrosion and chlorine evolution reaction, and few non-noble electrocatalysts show prominent catalytic performance and excellent durability. Here, a heterogeneous electrocatalyst constructed by in situ growing highly dispersed iron-rich bimetallic phosphide nanoparticles on metallic Ni3N (Fe2−2xCo2xP/Ni3N), which exhibits outstanding bifunctional catalytic activities for alkaline seawater splitting, is reported. The optimal (Fe0.74Co0.26)2P/Ni3N and Fe2P/Ni3N electrocatalysts demand only 113 and 212 mV to afford 100 mA cm−2 for hydrogen and oxygen evolution reactions (HER and OER) in 1 m KOH, respectively, thus substantially expediting overall water/seawater electrolysis at 100 mA cm−2 with 1.592/1.645 V. Particularly, Fe2P/Ni3N displays an unprecedented overpotential of 302 mV at 500 mA cm−2, which represents the best alkaline seawater oxygen evolution activity among the ever-reported non-noble electrocatalysts; and thus substantially expedites overall water/seawater splitting at 500 mA cm−2 with 1.701/1.768 V, surpassing most of the reported non-noble lectrocatalysts. This work provides a new approach for developing high-performance electrocatalysts for seawater splitting.  相似文献   

19.
A series of Ce0.8Gd0.2?xNdxO2?δ (x = 0–0.20) compositions have been synthesized by citric acid–nitrate combustion method. XRD measurements indicate that all the obtained materials crystallized in cubic fluorite-type structure. Lattice parameters were calculated by Rietveld method and the parameter a values in Ce0.8Gd0.2?xNdxO2?δ system obey Vegard's law, a (Å) = 5.4224 + 0.1208x. The obtained powders have good sinterability and the relative density could reach above 95% after being sintered at 1400 °C. Impedance spectroscopy measurements indicated that the conductivity of Ce0.8Gd0.2?xNdxO2?δ first increased and then decreased with Nd dopant content x. The maximum conductivity, σ700 °C = 6.26 × 10?2 S/cm, was found in Ce0.8Gd0.12Nd0.08O1.9 when sintered at 1300 °C. The corresponding activation energies of conduction had a minimum value Ea = 0.676 eV. The results tested experimentally the validity of the effective atomic number concept of recent density functional theory, which had suggested that co-dopant with effective atomic number between 61 (Pm) and 62 (Sm) was the ideal dopant exhibiting high ionic conductivity and low activation energy.  相似文献   

20.
Metal–organic frameworks (MOFs) have received much attention as a solid-state electrolyte in proton exchange membrane fuel cells. The introduction of proton carriers and functional groups into MOFs can improve the proton conductivity attributed to the formation of hydrogen-bonding networks, while the underlying synergistic mechanism is still unclear. Here, a series of flexible MOFs (MIL-88B, [Fe3O(OH)(H2O)2(O2C-C6H4-CO2)3] with imidazole) is designed to modify the hydrogen-bonding networks and investigate the resulting proton-conducting characteristics by controlling the breathing behaviors. The breathing behavior is tuned by varying the amount of adsorbed imidazole into pore (small breathing (SB) and large breathing (LB)) and introducing functional groups onto ligands (-NH2, -SO3H), resulting in four kinds of imidazole-loaded MOFs−Im@MIL-88B-SB, Im@MIL-88B-LB, Im@MIL-88B-NH2, and Im@MIL-88B-SO3H. Im@MIL-88B-LB without functional groups exhibits the highest proton conductivity of 8.93 × 10−2 S cm−1 at 60 °C and 95% relative humidity among imidazole-loaded proton conductors despite the mild condition, indicating that functional groups may not be always required to enhance proton conductivity. The elaborately controlled pore size and host–guest interaction in flexible MOFs through imidazole-dependent structural transformation are translated into the high proton concentration without the limitation of proton mobility, contributing to the formation of effective hydrogen-bonding networks in imidazole conducting media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号