首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重油催化裂化工艺的新进展   总被引:3,自引:0,他引:3  
介绍了重油催化裂化工艺的新进展,如毫秒催化裂化工艺、下行床反应器催化裂化工艺、两段提升管催化裂化工艺、多产轻质烯烃的催化裂化新工艺、催化裂化汽油改质降烯烃新工艺等,并对重油催化裂化工艺的发展趋势进行了展望。  相似文献   

2.
The process of heavy crude oil steam cracking using semi-flow (with respect to water) and steadystate regimes at 425°C without catalyst is investigated. It is established that in the case of a semi-flow regime, water acts predominantly as a physical agent facilitating the distillation of hydrocarbon fractions and thus preventing their transformation into petroleum coke. A reduction in coke yield is observed for a steady-state regime in comparison to a semi-flow regime; the introduction of water results in enhanced conversion of the high-boiling fraction and an increased yield of light fractions in the composition of liquid products. Based on the obtained data, it is concluded that water plays a positive role during the conversion of heavy crude oil, and that the steam cracking process is promising for production of lighter synthetic and/or semi-synthetic oils.  相似文献   

3.
以石蜡基的苏丹达尔原油和环烷基的绥中36-1原油为原料,在固定流化床装置上进行了催化裂化实验,考察了反应温度、剂油比和重时空速对重油转化率和汽柴油产率的影响。结果表明,虽然基属不同,两种高酸原油催化裂化脱酸率都在99%以上,但是重油转化率和产物分布有明显区别。达尔原油裂化性能好,转化率高,但柴油产率较低,焦炭产率太高;绥中原油裂化性能差,重油转化率只有72.78%,但柴油收率较高。反应条件对两种高酸原油催化裂化的影响差别较大,反应温度和剂油比的改变对石蜡基的达尔原油影响较大,而重时空速对环烷基的绥中原油影响较大。  相似文献   

4.
当前国内炼油产能过剩,化工品如低碳烯烃及苯-甲苯-二甲苯混合物(BTX)等存在缺口,因此应推动炼油向石化的生产转变,化解过剩产能同时提高化工品供给。我国原油馏分偏重且原油重质化劣质化趋势不可逆转,因此利用重油生产低碳烯烃等化工品成为技术关键。本文介绍了重油生产低碳烯烃的催化裂解单项技术典型工艺,包括重油深度催化裂解(DCC)、催化热裂解(CPP)及重油裂解制烯烃(HCC)工艺,认为催化裂解技术的发展在于催化剂的改性与反应器型式的革新优化,下行床反应器前景更为广阔。同时,本文也介绍了从重油或原油通过加氢裂化联合催化裂解、蒸汽裂解及芳烃装置一体化生产化工品的几种国内外工艺技术及工程项目。在单项技术无法取得明显突破之前,炼化一体化生产化工品具有集约化、高效化、灵活性高及经济效益好等优势。一体化技术的重点在于重油(渣油)的深度转化,可通过渣油的加氢裂化工艺来实现。  相似文献   

5.
Two model bio‐oil fractions were chosen as two different major classes of components present in bio‐oil. Steam reforming of the two fractions was carried out to investigate the gas product distributions and carbon deposition behavior. Higher H2 yield and carbon conversion to the gaseous phase can be obtained at relatively low temperature (650 °C) for steam reforming of the light fraction. For steam reforming of the heavy fraction, a higher temperature (800 °C) is necessary to obtain higher H2 yield and carbon conversion to the gaseous phase. At 800 °C, the heavy fraction requires a higher steam to carbon ratio (10) than that for the light fraction (7) to achieve efficient steam reforming. Based on the same carbon space velocity, for 10 h stream time, the drop of H2 yield and carbon conversion to the gaseous phase in the steam reforming of the heavy fraction is more rapid than that of the light fraction. Carbon deposition in the steam reforming of the heavy fraction is much more severe than that of the light fraction, as determined by carbon content analysis and SEM detection.  相似文献   

6.
流化催化裂化汽油改质和增产低碳烯烃的研究   总被引:4,自引:0,他引:4  
采用GL型催化剂,在小型固定流化床实验装置上考察了反应温度、剂油比、空速和水油比等操作条件对流化催化裂化(FCC)汽油催化改质汽油的产品分布、低碳烯烃(丁烯、丙烯和乙烯)产率和族组成的影响。实验结果表明,在一定反应条件下,FCC汽油通过催化改质可以降低烯烃含量,提高芳烃含量和辛烷值,在满足新汽油标准的同时提高了低碳烯烃的产率。此外,较高的反应温度、剂油比和水油比以及较低的空速有利于FCC汽油催化改质和增产低碳烯烃。  相似文献   

7.
With the purpose of increasing the yield of light C2-C4 olefins in comparison with that in conventional catalytic cracking, we experimentally study the effect of temperature and catalyst-to-oil ratio on the distribution of the basic products of oil catalytic cracking on the bizeolite and industrial LUX catalysts. The bizeolite catalyst contains ZSM-5 and ultrastable Y zeolites in equivalent amounts, while the LUX catalyst contains 18 wt % of Y zeolite in the HRE form. As shown by the results of our tests, the yield of C2-C4 olefins and gasoline in the deep catalytic cracking of hydrotreated vacuum gasoil on the bizeolite catalyst within a range of catalyst-to-oil ratios of 5–7 and temperatures of 540–560°C reaches 32–36 and nearly 30 wt %, respectively. In cracking on the LUX catalyst under similar conditions, the yield of light olefins and gasoline is 12–16 and 37–45 wt %, respectively. The distribution of target products in the deep catalytic cracking of different hydrocarbon fractions (vacuum gasoil, gas condensate, its fraction distilled from the cut boiling below 216°C, and the hydrocracking heavy residue) on the bizeolite catalyst is studied. It is shown that the fractions of gas condensate and hydroc-racking residue can serve as an additional source of hydrocarbon raw materials in the production of olefins.  相似文献   

8.
The effect of temperature, WHSV and Fe loading over HZSM-5 catalyst in thermal-catalytic cracking (TCC) of naphtha for the production of light olefins has been studied. The response surface defined by three most significant parameters is obtained from Box-Behnken design method and the optimal parameter set is found. The results show that ethylene increases with temperature, while propylene shows an optimum at 650 °C. Moderate WHSV is favorable for maximum production of light olefins. Addition of Fe to HZSM-5 has a favorable effect on the production of light olefins up to 6% of loading. Excess amount of loading decreases the conversion of naphtha, which leads to a drop in light olefin yields. The yield of light olefins (ethylene and propylene) at 670 °C, 44 hr−1 and 6 wt% Fe has been increased to 5.43 wt% compared to the unmodified HZSM-5 and reaches to 42.47 wt%.  相似文献   

9.
Conversion of vegetable oils predominantly composed of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to compare catalytic cracking with thermal cracking on production of gaseous hydrocarbon and gasoline conversion by cottonseed oil, and to discuss the difference on composition of products from catalytic cracking and thermal cracking. Reaction products are heavily dependant on the catalyst type (catalyst activation) and reaction conditions. They can range from dry gas to light distillate, such as dry gas, liquefied petroleum gas and gasoline. When the temperature of catalytic cracking is over 460 °C, the effects of thermal cracking must be considerable.  相似文献   

10.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production. __________ Translated from Chemical Reaction Engineering and Technology, 2006, 22(6): 532–538 [译自: 化学反应工程与工艺]  相似文献   

11.
The production of C2-C4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fields in the form of aluminosilicate sheets rolled in nanotubes. It is found that in the deep catalytic cracking of vacuum gas oil at 600°C using halloysite as a catalyst, the gain in the yield of ethylene is 6.4–10.1 wt %, compared to yields of this product when using ZSM-5 catalyst. Adding 10% commercial-grade cottonseed oil to the vacuum gas oil further increases the yield of ethylene by 2.2 wt % with a simultaneous 3.3 wt % rise in the yield of propylene. The cracking of pure cottonseed oil under identical conditions yields ethylene and propylene of 16.1 and 9.2 wt %, respectively. The possibility of using halloysite nanotubes as a heating surface for the thermal pyrolysis of the above feedstocks at temperatures of 700–800°C in order to obtain yields of C2-C3 olefins exceeding those of identical products in industry, and of reusing halloysites in the thermoconversion of the studied feedstocks via their complete regeneration, is confirmed.  相似文献   

12.
The catalytic steam cracking (CSC) of heavy crude oil with high amount of sulfur (4.3 wt %) and high-boiling fractions (>500°C) is studied using Mo and Ni nanodispersed catalysts under static conditions (in an autoclave) at 425°C. Experiments on thermal cracking, steam cracking, and catalytic cracking without water are performed to compare and identify the features of CSC. The relationship between the composition and properties of liquid and gaseous products and process conditions, the type of catalyst, and water is studied. Using Ni catalyst in CSC raises the H: C ratio (1.69) in liquid products, compared to other types of cracking, but also increases the yield of coke and gaseous products, so the yield of liquid products falls. When Mo catalyst is used in CSC, low-viscosity semi-synthetic oil with a higher H: C ratio (1.70) and the lowest amount of sulfur in liquid products (2.8 wt %) is produced. XRF and HRTEM studies of the catalyst-containing solid residue (coke) show that under CSC conditions, nickel is present in the form of well-crystallized nanoparticles of Ni9S8 15–40 nm in size, while molybdenum exists in two phases: MoO2 and MoS2, the ratio between which depends on the conditions of the transformation of heavy crude oil. The findings indicate that CSC is a promising process for improving heavy crude oil.  相似文献   

13.
为了获得催化裂解制备低碳烯烃的高效催化剂,以等体积浸渍法制备了系列单金属(Ce, Y, Zr, Mn, Cu)及双金属(Zr-Ce, Mn-Ce, Y-Ce, Cu-Ce)改性ZSM-5-USY复合分子筛催化剂,通过XRD, NH3-TPD, BET等方法表征了其物理化学性质,并将所制备催化剂用于催化裂解正己烷。结果表明,催化剂的弱酸量越多,正己烷转化率及C2~C4烯烃选择性越高,Zr-Ce共改性分子筛的催化活性较优。水蒸气处理对Zr-Ce/ZSM-5-USY催化剂的酸性及催化裂解产物分布有较大影响,经水蒸气处理的催化剂性能更稳定,可将裂解产物中低碳烯烃的选择性由20.02% (催化剂未经水蒸气处理)提高到57.55% (催化剂经水蒸气处理4 h)。研究了0.25% Zr-0.5% Ce/ZSM-5-USY催化体系的裂解反应动力学,正己烷裂解为一级反应,裂解活化能为88.93 kJ/mol。  相似文献   

14.
A ZSM-5-based catalyst was prepared by spray-dry method for fluidized-bed naphtha catalytic cracking. Multi-techniques, such as X-ray diffraction, scanning electron microscope, 27Al MAS NMR, and NH3–TPD, were employed for the investigation of ZSM-5 framework stability, framework dealumination, and catalyst acidity variation in hydrothermal treatment. Catalytic performances of fluidized-bed naphtha catalytic cracking at 630–680 °C indicated that light olefins and other value-added products could be more efficiently produced compared with the commercial process of thermal steam cracking. Long-term catalytic evaluation implied that naphtha catalytic cracking over the catalyst prepared with spray-dry method and hydrothermal treatment can be carried out at a variable reaction condition with a relatively high and stable light olefins yield.  相似文献   

15.
Currently, the pyrolysis of hydrocarbons for the production of light olefins is almost exclusively carried out in steam crackers operating around 900–1000°C. However, cracking hydrocarbons at much higher temperature results in high selectivity to acetylene, which can be converted into many petrochemical products including ethylene. The desired hydropyrolysis reaction from hydrocarbons to acetylene can be realized in a reverse‐flow reactor at very high temperatures (>1700°C) in a scalable manner. The reactor elements include ceramic components that are placed in the hottest regions of the reactor and must withstand a temperature that is in the range of 1500–2000°C. In addition, the temperature rises and falls with the reverse‐flow cycle; a fluctuation that could be as high as 100–500°C over a period of several seconds. Moreover, the materials in the hot zone are exposed alternately to a regeneration (heat addition) step that is mildly oxidizing, and a pyrolysis (cracking) step that is strongly reducing with a correspondingly high carbon activity. This article addresses the thermodynamic stability of selected ceramic materials based on alumina, zirconia, and yttria for such an application. Results from laboratory tests involving the exposure of these ceramic materials to simulated process conditions followed by their microstructural characterization are compared with expectations from thermodynamic predictions.  相似文献   

16.
Bio-oil is a potential product from the fast pyrolysis of biomass. However, it should be upgraded before being used in subsequent applications and corrosion prevention. In this work, crude bio-oil from fast pyrolysis of Jatropha curcas residues, which has many long-chain compounds, and a high content of carboxylic acid, was catalytically upgraded over mechanically mixed catalysts (normal ZSM-5 and Y-Re-16) in a fixed-bed reactor. The effects of the key parameters on the yields of light oil products were analyzed, including cracking temperature (350–500°C), reaction time (15–60?min), catalyst loading (10–25%), and mixture ratio between Y-Re-16 and ZSM-5 (10–70%). Experimental test cases were based on a simplex lattice design. The gas chromatograph-mass spectrometer (GC-MS) analysis showed that the catalytic cracking of crude bio-oil using mixed catalysts resulted in the successful formation of short-chain acid methyls. The employed analytical fit of the experimental data gave R2 and the adjusted R2 of 0.902 and 0.843, respectively. The optimized operation conditions to produce aliphatic hydrocarbons from mechanically mixed catalysts were found to be at 400°C, 15?min of reaction time, 15% of catalyst loading, and a mixture ratio of about 1:5.  相似文献   

17.
杨远飞  李晓红  齐国祯 《广州化工》2012,40(14):122-123,156
分析甲醇制低碳烯烃工艺与轻石脑油催化裂解制低碳烯烃工艺的相似性,论述了二者结合的可能性。实验表明,甲醇的加入能够促进轻油裂解为低碳烯烃的反应。分析了提升管反应器中的温度分布、催化剂活性分布以及这些因素对甲醇制烯烃反应的影响。同时对不同的甲醇加入方式进行了分析,提出甲醇在提升管反应器的适宜加入位置。具有一定的工业应用前景。  相似文献   

18.
Qingsong Sun  Fuchen Wang 《Fuel》2011,90(3):1041-5249
Pine wood was pyrolyzed in a fixed bed reactor at a heating rate of 10 °C and a final temperature of 700 °C, and the resultant volatiles were allowed to be secondarily cracked through a tubular reactor in a temperature range of 500-700 °C with and without packing a bed of char. The thermal effect and the catalytic effect of char on the cracking of tar were investigated. An attempt was made to deconvolute the intermingled contributions of the char-catalyzed tar cracking and the char gasification to the yields of gaseous and liquid products. It was found that the wood char (charcoal) was catalytically active for the tar cracking at 500-600 °C, while at 650-700 °C, the thermal effect became a dominant mode of the tar cracking. Above 600 °C, the autogenerated steam gasified the charcoal, resulting in a marked increase in the yield of gaseous product and a significant change in the gas composition. An anthracite char (A-char), a bituminous coal char (B-char), a lignite char (L-char) and graphite also behaved with catalytic activities towards the tar cracking at lower temperature, but only L-char showed reactivity for gasification at higher temperature.  相似文献   

19.
The CrHZSM-5 catalysts with trace amount of Cr were firstly used for catalytic cracking of isobutane, and the effect of Cr-loading on the catalytic performances of CrHZSM-5 catalysts for the cracking of isobutane was also studied. The results suggested that when the loading of Cr in the CrHZSM-5 catalysts was less than 0.038 mmol/g Cr, especially at Cr loading of 0.004 mmol/g, both the reactivity of isobutane cracking and the selectivity to light olefins of CrHZSM-5 samples were greatly enhanced compared with the unpromoted HZSM-5, and very high yields of olefins(C2+C3) and ethylene were obtained. For instance, the yield of olefins(C2+C3) and ethylene reached 56.1% and 30.8%, respectively, at 625 °C when 0.004 mmol/g Cr was loaded on HZSM-5 sample.  相似文献   

20.
生物质催化气化实验研究   总被引:1,自引:0,他引:1  
在常压流化床上进行了生物质在水蒸气条件下的实验研究。实验装置主体由常压流化床反应器和固定床催化裂解反应器组合而成。生物质原料为木屑,焦油裂解催化剂分别选用煅烧白云石和镍基重整催化剂。实验结果表明,H2/CO(H/C)的摩尔比随着气化温度、水蒸气质量/生物质质量(S/B)的升高迅速增加,但催化裂解温度变化对H/C的影响较小。另外,在催化裂解反应器中使用催化剂种类不同,H/C也不同。本文采用两段催化裂解,一段催化剂采用煅烧白云石,二段采用镍基催化剂,焦油裂解率达到96.70%。采用两段催化裂解,不但可以提高焦油的裂解率,增加了H2和CO收率,净化生物质裂解气,而且可以防止镍基重整催化剂失活,延长其使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号