首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用三维有限元法,对某胶凝砂砾石坝开展静、动力结构计算,重点分析了坝体和井廊系统的动位移、加速度和动应力分布规律。结果表明:坝体动位移、加速度和动应力反应分布符合一般规律,其中顺河向、竖向和坝轴向动位移极值分别为0.29 cm、0.13 cm和0.08 cm,顺河向、竖向和坝轴向加速度极值分别为5.88 m/s2、4.53 m/s2和2.71 m/s2,静动叠加后的坝体第一主应力最大值为1.20 MPa,第三主应力最小值为-1.78 MPa,均小于相应材料的抗拉和抗压强度,因此大坝满足强度要求。静力条件下,井廊道系统的拉应力和压应力极值均小于相应的规范允许值;地震作用下,竖井和廊道局部区域出现较大的拉、压应力,其中瞬时动拉应力超过混凝土的动抗拉强度,通过加强井廊系统的局部配筋,总体上能够满足安全运行的要求。  相似文献   

2.
采用三维非线性有限元法,对Ⅷ度强震区某拟建抽水蓄能电站坝高161 m的上库高沥青混凝土面板堆石坝开展静动力应力变形计算。结果表明:静力条件下大坝变形分布规律合理,蓄水期坝体水平位移和沉降量极值分别为62.64和151.85 cm,面板拉应变极值为0.56%;在Ⅷ度设防地震作用下,坝体顺沟谷向、坝轴向和竖向动位移极值分别为22.88、21.90和13.76 cm,加速度极值分别为12.31、12.26和12.14 m/s2,震后坝顶震陷极值为30.01 cm,震陷率为0.19%;在面板反弧段和挖填交界处为拉应变峰值区,极值为0.85%。综合评价大坝整体安全性能良好,地震时不会出现重大安全问题。  相似文献   

3.
为了分析某上游式尾矿坝的抗震安全性,采用等价黏弹性理论、Seed液化理论和Newmark滑动变形理论,对尾矿坝的地震动位移、加速度、液化区域、坝坡抗震稳定性及地震永久变形进行计算分析。结果表明:尾矿坝在Ⅶ度设防地震作用下,坝体动位移和加速度分布规律合理,其中水平向和竖向动位移极值分别为6.39和0.72 cm,水平向和竖向动加速度极值分别为4.06和2.64 m/s2;地震液化区域出现在尾水覆盖的滩面浅表层,未影响到整个坝体;地震时坝坡抗滑稳定安全系数最小值为1.09,地震结束后累计永久变形为11.95 cm。除远离坝坡的浅表层坝体出现小范围液化区外,大坝整体抗震安全性能较好,不会出现重大安全问题。  相似文献   

4.
对Abaqus软件进行二次开发,引入等效线性模型,对某心墙堆石坝进行了三维有限元地震反应分析,研究了大坝在Ⅶ度地震下的加速度、动剪应力、相对动位移等反应规律。同时,分别对该坝考虑三向地震波输入及仅两个水平向地震波输人情况下的地震动力反应进行了计算比较,研究竖向地震加速度在Ⅶ度地震下对大坝的影响。结果表明:Ⅶ度地震情况下竖向地震波对土石坝顺河向和坝轴向的动力反应几乎没有影响,但是对竖向的影响不可忽略。  相似文献   

5.
孔宪京  周晨光  邹德高  余翔 《水利学报》2019,50(12):1417-1432
我国土石坝建设高度已迈入300 m级,其体积和质量巨大,坝-基交界覆盖区域(建基面)沿顺河向长可超千米,且筑坝材料具有非线性特性,地震时的坝-基动力相互作用问题越发受到工程界的关注,亟待开展系统研究。本文以我国已建和拟建的若干代表性高土石坝工程为背景,采用波动分析方法考虑坝-基动力相互作用,系统地讨论了地基截取范围的影响,并通过与传统振动分析方法对比,研究了坝-基动力相互作用对大坝地震反应的影响。结果表明:高土石坝的地震反应计算采用波动分析方法更符合实际;在考虑坝-基动力相互作用时,建议地基截取范围取坝-基交界面顺河向长度的0.3~0.5倍(面板坝时约1.0H~1.5H,心墙坝时约1.2H~1.8H,H表示坝高);与振动分析方法相比,波动分析方法获得的坝体加速度极值降幅约为10%~40%,动位移极值降幅约为10%~50%,面板动应力极值降幅:拉应力约为20%~40%,压应力约为15%~30%。可见,坝-基动力相互作用的影响是显著的,振动分析方法不能反映地震对大坝作用的实际情况,高估了大坝的地震反应,从而低估大坝的极限抗震能力。  相似文献   

6.
纳子峡面板砂砾石坝地震反应特性有限元分析   总被引:1,自引:1,他引:0  
采用三维非线性动力有限元法,对纳子峡水利枢纽面板砂砾石坝的地震反应特性进行了计算分析,获得了该坝在设计地震作用下的动力反应,包括坝体和面板的加速度反应、位移反应、应力反应,以及周边缝和面板接缝的位移反应等.在50a超越概率10%地震作用下,坝体顺河向的最大加速度反应为6.8 m/s2,位移反应为59 mm,剪应力反应为...  相似文献   

7.
本文以某混凝土面板堆石坝工程为研究对象,基于ABAQUS有限元分析软件建立堆石坝三维有限元分析模型,利用该平台UMAT自定义子程序模块用邓肯E-B材料模型定义坝体填筑材料属性,通过对三维有限元模型施加不同高度的静水压力来模拟堆石坝蓄水过程,对完建期大坝蓄水过程中坝体的应力及变形规律进行研究。结果表明:当坝前水深大于35m时,最大主拉应力值明显增大,正常蓄水位工况下最大主拉应力值达到0.51MPa。与横河向位移和竖向位移相比,堆石坝蓄水过程能够引起较大的顺河向位移,且随着坝前水深的增加,顺河向位移最大值位置也逐渐发生改变。  相似文献   

8.
李声平  吴杰芳  彭翠玲 《人民长江》2005,36(7):51-52,59
坝高233m的水布垭混凝土面板堆石坝位于强震区,因此对大坝在强地震作用下的安全性进行评价是必要的。采用三维非线性有限元法分析方法对坝体在地震作用下的动力响应进行分析并对其安全性作出评价。计算采用的地震波为根据抗震规范的反应谱人工拟合的地震波,其水平向和竖向加速度峰值分别为0.1g和0.067g。分析结果表明,坝顶加速度反应显著放大,坝顶附近下游区加速度和动位移均大于上游区,特别是在水面以上较为显著,可能使坝顶下游侧发生局部滑动。在4/5坝高附近面板的拉应力较大,应充分考虑加强该区域面板的抗震性能。  相似文献   

9.
塔城砾石土心墙堆石坝最大坝高 315 m ,地震动作用下,坝身特别是坝体上部容易出现严重裂缝或者坝坡失稳等问题。为了考察高土石坝经历高震级地震时的抗震性能,坝体及覆盖层材料采用 Hardin 非线性动力模型,在三维非线性静力分析基础上,用时程法对大坝进行地震动力分析,以揭示在 Taft 三向地震波的作用过程中坝体中加速度、动位移、动应力的分布及其地震永久变形和液化情况。坝体非线性仿真结果表明,在设防烈度地震作用下,在坝体最大断面上,坝顶动力放大系数为 2.5 左右, 1/2 坝高小范围内有拉应力出现,坝体沉陷及向下游水平位移较大,坝踵坝趾局部有一定的液化可能。  相似文献   

10.
阿尔塔什面板坝最大坝高164.8 m,覆盖层深度94 m,大坝抗震按9度设防。坝基覆盖层与坝体总高度达258 m,按变形控制而言,为强震区300 m级超高面板堆石坝。根据坝料室内试验资料,考虑坝料振动过程中的硬化特性,对大坝和坝基组成的系统进行了整体三维有限元计算,通过分析坝体以及坝基防渗墙的地震加速度反应、动应力反应,分析了大坝震后永久变形以及面板与防渗墙连接部位的变形。结果表明:堆石体、面板及防渗墙最大加速度反应为9.8 m/s2,放大倍数在2.7~3.6倍之间,堆石体动剪应力不大于400 kPa,地震反应在容许范围内;大坝震后表现为体积震缩特性,最大震陷110 cm,占坝体与坝基可压缩层总高度的0.4%;大坝地震反应分布规律合理,坝体抗震安全性满足规范要求。研究成果可作为大坝抗震设计优化的依据。  相似文献   

11.
针对高面板堆石坝的结构特性,采用三维非线性有限元技术,对大坝的地震反应特性及抗震安全性进行计算分析。动力计算中坝体材料及覆盖层按照等效线性黏弹性模型考虑围压效应进行模拟,混凝土面板动力计算分析采用线性弹性模型,并依据考虑围压效应的残余体应变及残余轴应变的动应力-残余应变模型对某高面板堆石坝进行坝体地震工况下永久变形计算。计算结果显示:顺河向最大永久变形为15cm,竖直向最大永久变形为49cm,均发生坝顶位置,地震引起的竖向变形为坝高的0.4%;三维动力参数敏感性分析表明,堆石体的水平绝对加速度反应极值为9m/s~2,最大放大系数为4.2,堆石体、面板最大地震反应位于坝顶局部位置,存在明显的鞭稍效应,但坝体地震反应的分布规律一致,坝体及面板抗震安全性较好。  相似文献   

12.
采用数值模拟方法,对土卡河水电站厂房坝段整体混凝土结构及重点部位(进水口、蜗壳、尾水管)和大坝基础进行了应力应变研究.结果表明:坝顶向下游最大位移1 250cm,坝顶最大沉降1 128cm;地震工况下坝趾出现-0 818MPa的拉应力,坝踵在工况6下出现拉应力;蓄水工况下,进水口底部、蜗壳底部、尾水孔周边均存在极值约为-0 5MPa的拉应力.  相似文献   

13.
不同激振方向下动水压力对高面板坝面板动应力的影响   总被引:3,自引:1,他引:2  
孔宪京  许贺  邹德高  胡志强  周扬 《水利学报》2016,47(9):1153-1159
目前关于面板坝与库水动力相互作用的研究较少,而且现有的研究没有考虑库底与岸坡振动所激起的动水压力,即不能精确计算动水压力对高面板坝的影响,难以满足300 m级面板坝的安全评价要求。本文采用比例边界有限元方法计算动水压力,对坝高为300 m的面板坝进行了地震作用下三维有限元动力分析,研究了不同方向地震激励下坝面动水压力的分布规律及其对面板动应力的影响。结果表明:顺河向和坝轴向激励的动水压力最大值相差不大,而竖向激振的动水压力最大值相对较大。顺河向地震作用产生的动水压力对面板动应力有明显影响,而坝轴向地震作用下,动水压力对面板动应力有一定影响;竖向地震作用引起的动水压力对面板的动应力影响较大,不考虑动水压力时会明显低估面板的顺坡向应力最大值及高应力区范围。  相似文献   

14.
为研究康定Ms6.3和Ms5.8级(Ms为面波震级)2次地震动的响应规律,在大渡河摩岗岭段两岸斜坡不同高程处掘进平硐并安置了强震监测仪。监测数据揭示1#监测点记录的水平向和竖直向PGA(地表峰值加速度)最大,Ms6.3级水平向达到了16.5~22.2 cm/s2,竖直向也达到了8.9 cm/s2;Ms5.8级水平向为9.9~11.8 cm/s2,竖直向为4.1 cm/s2。以2#监测点记录的2次地震加速度PGA值为参考,1#监测点水平向和竖直向PGA放大系数最大,Ms6.3级水平向和竖直向放大系数分别达到5.4,4.2,而震级较小的Ms5.8分别为3.7,2.2。傅里叶谱分析可得各监测点记录的2次地震卓越频率相差不大。由各监测点加速度反应谱可得同次地震中海拔最高的1#监测点水平向和竖直向反应谱幅值最大;对比同一监测点不同震级加速度反应谱,较大震级的Ms6.3级各个方向幅值比Ms5.8级大。研究表明斜坡不同高程部位对地震波具有选择放大作用,高程越大,这种放大效应越明显。  相似文献   

15.
基于邓肯-张模型,运用数值仿真分析技术,对新疆某浇筑式沥青混凝土心墙坝进行有限元计算,得到竣工期和满蓄期大坝的应力变形特性。分析结果表明:顺河向水平最大位移及堆石体和心墙接触面最大竖向相对位移均发生在上游坝面约1/3坝高处;竣工期顺河向水平位移基本关于坝轴线对称;满蓄期,水压力作用下,顺河向位移向上游减小,而向下游增大,最大位移为9.1 cm。最大沉降发生在满蓄期,位于坝体中轴线偏下游约1/2坝高处,最大位移为16.7 cm。大主应力和小主应力沿坝高方向呈现从坝顶到坝底逐步增加的趋势,其最大值均发生在坝轴线处心墙与基座接触部位。研究所获得的计算分析结果,为同类工程的设计和计算分析提供参考。  相似文献   

16.
基于有限元结合应力型黏弹性人工边界的方法,建立了丰满水电站重建工程挡水坝段有限元数值模型,分析了地震动0°输入时不同峰值速度和峰值加速度对重力坝地震反应的影响。结果表明,地震动峰值速度对坝体参考点位移、应力的影响程度明显大于地震动峰值加速度;随着地震动峰值速度的增加,坝体各参考点顺河向位移和竖直向位移都呈现出逐渐增加的趋势;第一主应力和第三主应力分别在坝踵和坝趾处影响程度大。  相似文献   

17.
眭峰  顾淦臣 《水力发电》1997,(10):10-13
采用直接滤频法对蓄水后的鲁布革水电站心墙堆石坝进行自振特性分析,其结果是前五阶自振频率间隔较密,频率谐较低,说明该坝对低频振动更为敏感。从顺河,铅直和坝轴线3个不同的方向输入不同频率的简谐波,其幅频反应;顺河向激振,位移反应最大;铅直方向激振,加速度反应最大;最大位移反应出现在激振频率较低时段,最大加速度反应出现在激振频率与软化后坝体某阶自振频率相近时。由于影响坝坡抗震稳定的主要因素是加速度放大倍  相似文献   

18.
李兴印  辛全才 《水力发电》2013,39(1):44-45,58
采用振型分解反应谱法,分析了不同上、下游坡度的某重力坝在8度地震设计烈度下的地震响应,得到了地震作用下大坝不同坡度顺流向和竖向的最大位移响应、坝踵最大拉应力响应和坝址最大压应力响应。通过对比分析,得到地震作用下上、下游坡率变化对重力坝抗震性能的影响。  相似文献   

19.
沥青混凝土心墙坝因其能够适应复杂的地质环境而被广泛应用在恶劣的环境中。在地震频发、强度大的区域,如果沥青混凝土心墙坝在地震的作用下发生破坏,将造成严重的损失与灾难。因此,对混凝土心墙坝的动力学特性进行研究具有重要工程意义。以新疆某高沥青混凝土心墙坝为研究对象。采用有限元计算软件ABQUES对不同高度的沥青混凝土心墙进行地震作用下的动力学特性进行分析,结果表明:沥青混凝土心墙坝在地震作用下,位移以及速度最大的点出现在坝顶的中心位置;随着坝体增高,心墙承受的压力越大;地震过程中,顺河向、坝轴向、竖向3个方向加速度和位移均随坝体的高度增加而增大,顺河向影响最大,坝轴向适中,竖向最小。  相似文献   

20.
针对某水库大坝混凝土连接坝段、均质壤土挡水坝段静动力计算中须考虑渗透体力的问题,提出了一种在静动力计算中渗流体力的施加方法,采用MSC.Marc有限元软件,通过Fortran语言自编用户子程序,对该坝地震响应过程开展仿真分析。计算结果表明:在50年超越概率为10%的设计地震作用下,坝体的水平绝对加速度反应极值为5.0 m/s~2,最大放大系数为7.70;竖向地震永久变形最大值主要集中在最大断面坝顶附近,地震沉陷量约为坝高的0.06%;最大地震动加速度、动位移反应位于坝顶局部位置;坝顶存在明显的鞭鞘效应,需要在坝顶进行适当的抗震加固;各分区的设计与填筑标准、坝体分层填筑方案合理,坝体抗震安全性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号