首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-?400 °C using in situ generated hydrogen via steam reforming of ethanol and the effect of some organic additives was studied for the first time. Four kinds of alumina-based catalysts, i.e. Co?-Mo/Al2O3, Ni-Mo/Al2O3 and their corresponding Pd promoted catalysts Pd-?Co-?Mo/Al2O3 and Pd-?Ni-?Mo/Al2O3, prepared through incipient impregnation method, were used for the desulfurization process. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Experiments showed that organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine can affect the HDS activity of the catalysts in different ways, and only naphthalene is inhibitive for the catalytic activity towards HDS. The results showed that Ni-based catalysts are more active than Co-based ones while Pd shows a high promotion effect. DBT conversion of up to 97% was achieved with Pd-?Ni-?Mo/Al2O3 catalyst at 380 °C temperature and 13 h reaction time. Catalyst systems followed the HDS activity order of: Pd-?Ni-?Mo/Al2O3 > Ni-?Mo/Al2O3 > Pd-?Co-?Mo/Al2O3 > Co?-Mo/Al2O3 at all conditions. Qualitative analysis of the products stream was carried out using GC?-MS technique. The present HDS process using in situ generated hydrogen might be applied as an alternative approach for the catalytic HDS of DBT on industrial level due to its cost effectiveness, mild operating conditions and high activity of the catalysts.  相似文献   

2.
为了“碳达峰,碳中和”的目标,开发以可再生能源为主体的绿色制氢技术势在必行。基于原位汽化策略,本文在自主研发的固定床/流化床催化重整一体式反应装置上开展水相生物油催化重整制氢对比实验。结果发现,在经原位汽化改进后的催化重整制氢工艺中,流化床内水相生物油转化效率(95%左右)明显高于固定床(80%左右),两种反应体系中的H2选择性均能100%保持较长时间稳定,但在反应进行到100min左右时,固定床反应体系中出现了明显的催化剂积炭失活现象,而流化床体系中催化剂始终保持较高活性,未发现积炭生成。从反应后液相产物分析可以发现,流化床反应体系中水相生物油各组分接近完全转化,而固定床反应体系中除有少量乙酸和苯酚残留外,还有少量酮类物质产生(丙酮等)。因此,原位汽化策略可以有效促进水相生物油催化重整制氢过程,结合流化床中催化剂的流化效果,将极大促进生物质-生物油-氢气的产业链推广进程。  相似文献   

3.
杨宇  杨莉  白波 《化学工程》2011,39(12):17-20
以有机污染物为电子供体可达到制氢与治污的双重目标.通过高温固相法制备了新型NiO/InVO4复合光催化剂.采用XRD,SEM,UV-VIS,BET等测试手段对复合光催化剂的物理和光学性质进行了表征,考察了NiO/InVO4复合光催化剂降解甲酸水溶液制氢的光催化反应.结果表明:NiO/InVO4复合光催化剂为正交晶相结构...  相似文献   

4.
Use of biodiesel and its production are expected to grow steadily in the future. With the increase in production of biodiesel, there would be a glut of glycerin in the world market. Glycerin is a potential feedstock for hydrogen production because one mol of glycerin can produce up to four mols of hydrogen. However, less attention has been given for the production of hydrogen from glycerin. The objective of this study is to develop, test and characterize promising catalysts for hydrogen generation from steam reforming of glycerin. Fourteen catalysts were prepared on ceramic foam monoliths (92% Al2O3, and 8% SiO2) by the incipient wetness technique. This paper discusses the effect of these catalysts on hydrogen selectivity and glycerin conversion in temperatures ranging from 600 to 900 °C. The effect of glycerin to water ratio, metal loading, and the feed flow rate (space velocity) was analyzed for the two best performing catalysts. Under the reaction conditions investigated in this study, Ni/Al2O3 and Rh/CeO2/Al2O3 were found as the best performing catalysts in terms of hydrogen selectivity and glycerin conversion. It was found that with the increase in water to glycerin molar ratio, hydrogen selectivity and glycerin conversion increased. About 80% of hydrogen selectivity was obtained with Ni/Al2O3, whereas the selectivity was 71% with Rh/CeO2/Al2O3 at 9:1 water to glycerin molar ratio, 900 °C temperature, and 0.15 ml/min feed flow rate (15300 GHSV). Although increase in metal loading increased glycerin conversion for both catalysts, hydrogen selectivity remained relatively unaffected. At 3.5 wt% of metal loading, the glycerin conversion was about 94% in both the catalysts.  相似文献   

5.
Mg/Al supported metal (Fe, Co, Ni and Cu) oxide catalysts were prepared by co-precipitation of hydrotalcite-like clay materials as precursors, calcined, and used for the ozonation reaction of phenol and oxalic acid. The reaction was carried out using the catalyst and aqueous solution of phenol or oxalic acid in an O3/O2 mixed gas-flow at 20 °C. In the ozonation of phenol, the combination of ozone and supported metal oxide catalysts was effective for the removal of total organic carbon (TOC). Also in the ozonation of oxalic acid as the main TOC component, Cu/Mg/Al catalysts showed the highest activity, followed by Ni/Mg/Al catalyst, while both Fe/Mg/Al and Co/Mg/Al catalysts were not active. Leaching of Cu and Ni, probably due to the chelation of metals by oxalic acid, was significantly observed at the beginning of the reaction. However the metal leaching disappeared at the end of the reaction possibly due to the entire consumption of oxalic acid during the reaction. The best result of oxalic acid mineralization was observed over Cu/Mg/Al catalyst calcined at 600 °C, on which least leaching of the metal was detected. Moreover, a “memory effect” of hydrotalcite accelerated the mineralization of oxalic acid over the Cu/Mg/Al catalyst; oxalate anions were captured and decomposed in the reconstituted hydrotalcite interlayer space on the surface of the Cu/Mg/Al catalyst, resulting in a remarkable enhancement in the catalytic activity of the ozonation.  相似文献   

6.
7.
More than 130 Pt and Pd bimetallic catalysts were screened for hydrogen production by aqueous-phase reforming (APR) of ethylene glycol solutions using a high-throughput reactor. Promising catalysts were characterized by CO chemisorption and tested further in a fixed bed reactor. Bimetallic PtNi, PtCo, PtFe and PdFe catalysts were significantly more active per gram of catalyst and had higher turnover frequencies for hydrogen production (TOFH2) than monometallic Pt and Pd catalysts. The PtNi/Al2O3 and PtCo/Al2O3 catalysts, with Pt to Co or Ni atomic ratios ranging from 1:1 to 1:9, had TOFH2 values (based on CO chemisorption uptake) equal to 2.8–5.2 min−1 at 483 K for APR of ethylene glycol solutions, compared to 1.9 min−1 for Pt/Al2O3 under similar reaction conditions. A Pt1Fe9/Al2O3 catalyst showed TOFH2 values of 0.3–4.3 min−1 at 453–483 K, about three times higher than Pt/Al2O3 under identical reaction conditions. A Pd1Fe9/Al2O3 catalyst had values of TOFH2 equal to 1.4 and 4.3 min−1 at temperatures of 453 and 483 K, respectively, and these values are 39–46 times higher than Pd/Al2O3 at the same reaction conditions. Catalysts consisting of Pd supported on high surface area Fe2O3 (Nanocat) showed the highest turnover frequencies for H2 production among those catalysts tested, with values of TOFH2 equal to 14.6, 39.1 and 60.1 min−1 at temperatures of 453, 483 and 498 K, respectively. These results suggest that the activity of Pt-based catalysts for APR can be increased by alloying Pt with a metal (Ni or Co) that decreases the strengths with which CO and hydrogen interact with the surface (because these species inhibit the reaction), thereby increasing the fraction of catalytic sites available for reaction with ethylene glycol. The activity of Pd-based catalysts for APR can be increased by adding a water-gas shift promoter (e.g. Fe2O3).  相似文献   

8.
Most photocatalytic reactions are conducted near room temperature. In this work, we explored photothermal hydrogen production in a carefully designed photo reactor with external heating. Light sources of different wavelength bands were investigated. Formic acid was used as sacrificial regent to study the photothermal hydrogen production activity. Interestingly, the photothermal reaction is not the simple sum of the photo and thermal effects but their synergetic coupling and at 90°C it is 8.1 and 4.2 times of that under photo or thermal conditions alone. With thermal excitation, the bound electrons in Pt can be excited which can easily overcome the energy barrier between Pt and lowest unoccupied molecular orbital of the adsorbed reactants. Activation of the substrate itself by light is also found to be crucial to trigger such photothermal reaction. It is therefore different from traditional plasma resonance induced photothermal reaction where long wavelength IR light is more preferred. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2916–2925, 2017  相似文献   

9.
10.
采用不同体系制备了碳载Pd催化剂(Pd/C),发现在乙二醇体系中制备的Pd/C催化剂对甲酸氧化具有最负的峰电位和最低的起始氧化电位,Tafel斜率最小为155mV,并且在1h的计时电流曲线测试表明,用乙二醇体系制备的Pd/C-3催化剂具有较高的稳定电流。TEM结果可以看出,用乙二醇体系制备的Pd/C催化剂Pd粒子在活性碳表面分散得最好,Pd粒径的大小约为4~5nm。  相似文献   

11.
It has been found that ethylene and propylene could be effectively hydrogenated by formic acid vapour over a Pd/carbon catalyst at low temperatures (<440 K). Surface hydrogen formation from formic acid is the rate-determining step for this hydrogenation reaction. Interaction of this hydrogen with the olefins is then fast. The conversion of formic acid in the presence of either of the olefins at any temperature is higher than in their absence. This has been explained by a much lower surface hydrogen concentration in the presence of the olefins. Direct experiments have confirmed that hydrogen inhibits the formic acid decomposition. Water vapour addition has a small positive effect on the decomposition of formic acid as well as on the hydrogenation of the olefins with formic acid. Catalysts consisting of gold supported on carbon or titania are both active in the production of hydrogen from formic acid. However, in contrast to the Pd/C catalyst, neither gives hydrogenation of the olefins with this acid.  相似文献   

12.
Fe_2O_3 catalyst samples were used for the decomposition of formic acid, in the gas phase. These catalysts were produced by calcination of Fe(NO_3)3· 9H_2O for 5 h, in air, in the temperature range 200-600C. All catalysts were characterized by temperature-programmed reduction (TPR) and X-ray diffraction (XRD). In addition, the surface area (SBET) of these samples as well as the acidity and the basicity were determined. The catalytic gas-phase decomposition of formic acid was studied over Fe_2O_3 samples, at 200C, in a flow system. Carbon monoxide, carbon dioxide and formaldehyde were identified as the decomposition products using gas chromatography. A correlation between the acid-base characters of the used catalysts, and the rate of the decomposition products has been made. Also, a reaction mechanism is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The catalytic gas-phase decomposition of formic acid was studied over Au/Al2O3 and Pt/SBA-15 to investigate the formation of products other than H2, CO2, CO and H2O. Formaldehyde, methanol and methyl formate were detected and identified as secondary products. Two calculation methods for H2 selectivity (direct and indirect) were compared and assessed in terms of their validity at different temperatures, establishing that a direct quantification of H2 is necessary for correct results. Based on selectivity trends of all the detected products a reaction scheme is proposed for the decomposition of formic acid and formation of formaldehyde, methanol and methyl formate.  相似文献   

14.
Nickel catalysts supported on various supports such as ZnO, MgO, ZrO2, TiO2, and Al2O3 were prepared by an impregnation method to investigate the effect of support on catalytic performance in hydrogen production by auto-thermal reforming of ethanol. Among the supported catalysts, the Ni/ZrO2 and Ni/TiO2 catalysts showed better catalytic performance than the other catalysts. The electronic structure of nickel species supported on ZrO2 and TiO2 was favorably modified for the reaction, and thus, the reducibility of nickel species supported on ZrO2 and TiO2 was increased due to the weak interaction between nickel and support. On the other hand, the Ni/MgO and Ni/ZnO catalysts exhibited poor catalytic performance in the auto-thermal reforming of ethanol due to the formation of a solid solution phase.  相似文献   

15.
Direct synthesis of phenol from benzene over hydroxyapatite catalysts   总被引:1,自引:0,他引:1  
The direct synthesis of phenol from benzene in the gas phase was studied over hydroxyapatite catalysts. The reaction was carried out in a fixed-bed reactor at atmospheric pressure and reaction temperature of 450°C in the presence of ammonia. A high selectivity (about 97%) of phenol formation at about 3.5% conversion of benzene was achieved over catalysts containing Ca and Cu ions in the cation part of hydroxyapatite. Besides phenol as the main reaction product, aniline is also formed. The reaction mechanism involves formation of N2O from NH3 in the first step of reaction. Benzene is oxidized by active oxygen species which are formed on the catalyst by decomposition of N2O.  相似文献   

16.
The catalytic performance of supported noble metal catalysts for the steam reforming (SR) of ethanol has been investigated in the temperature range of 600–850 °C with respect to the nature of the active metallic phase (Rh, Ru, Pt, Pd), the nature of the support (Al2O3, MgO, TiO2) and the metal loading (0–5 wt.%). It is found that for low-loaded catalysts, Rh is significantly more active and selective toward hydrogen formation compared to Ru, Pt and Pd, which show a similar behavior. The catalytic performance of Rh and, particularly, Ru is significantly improved with increasing metal loading, leading to higher ethanol conversions and hydrogen selectivities at given reaction temperatures. The catalytic activity and selectivity of high-loaded Ru catalysts is comparable to that of Rh and, therefore, ruthenium was further investigated as a less costly alternative. It was found that, under certain reaction conditions, the 5% Ru/Al2O3 catalyst is able to completely convert ethanol with selectivities toward hydrogen above 95%, the only byproduct being methane. Long-term tests conducted under severe conditions showed that the catalyst is acceptably stable and could be a good candidate for the production of hydrogen by steam reforming of ethanol for fuel cell applications.  相似文献   

17.
Production of hydrogen (H2) from catalytic steam reforming of bio-oil was investigated in a fixed bed tubular flow reactor over nickel/alumina (Ni/Al2O3) supported catalysts at different conditions. The features of the steam reforming of bio-oil, including the effects of metal content, reaction temperature, WbHSV (defined as the mass flow rate of bio-oil per mass of catalyst) and S/C ratio (the molar ratio of steam to carbon fed) on the hydrogen yield were investigated. Carbon conversion (moles of carbon in the outlet gases to moles of the carbon feed) was also studied, and the outlet gas distributions were obtained. It was revealed that the Al2O3 with 14.1% Ni content gave the highest yield of hydrogen (73%) among the catalysts tested, and the best carbon conversion was 79% under the steam reforming conditions of S/C = 5, WbHSV = 13 1/h and temperature = 950 °C. The H2 yield increased with increasing temperature and decreasing WbHSV; whereas the effect of the S/C ratio was less pronounced. In the S/C ratio range of 1 to 2, the hydrogen yield was slightly increased, but when the S/C ratio was increased further, it did not have an effect on the H2 production yield.  相似文献   

18.
氢能源是热效率高、清洁无污染的新型绿色能源,乙醇重整反应制取氢气具有氢含量较高、毒性低和符合可持续发展等优势,应用前景较广阔.针对乙醇重整制氢催化剂高温易积炭失活,性能不稳定的问题,提出了通过合理选用催化剂活性组分并利用助剂和载体对其改性的方法可改善催化剂的综合性能.从催化剂性能角度分析,综述钴、镍和铜基催化剂在乙醇重...  相似文献   

19.
采用浸渍、热分解、氢还原等步骤制备了一系列Co/La2O3,催化剂,并将其应用于乙醇水蒸汽重整制氢反应.采用固定床反应考察了温度和水醇比对催化剂性能的影响.用N2吸附、XRD、TPR等手段对催化剂进行了表征.结果表明:5%Co/La2O3,催化剂对乙醇水蒸汽重整制氢反应表现出最高的活性.在500℃、水醇比为3:1时,乙醇的转化率达可到64.8%,H2的产率和选择性分别为1.0 mol/mol和86.1%.另外,在反应温度低于450℃时,H2的选择性可达90%以上.  相似文献   

20.
A new series of Ni-Rh bimetallic catalysts with different Ni and Rh loadings on a high-surface-area CeO2 was developed for the reforming of bio-ethanol at low-temperature (below 450 °C) to produce H2-rich gas for on-site or on-board fuel cell applications. Oxidative steam reforming of ethanol (OSRE) over a Ni-Rh/CeO2 catalyst containing 5 wt% Ni and 1 wt% Rh was found to be more efficient offering about 100% ethanol conversion at 375 °C with high H2 and CO2 selectivity and low CO selectivity compared to the steam reforming of ethanol (SRE) reaction which required a higher temperature of about 450 °C to achieve 100% ethanol conversion. The high temperature SRE reaction favors the formation of large amount of CO, which would make the downsteam CO cleanup more complicated for polymer electrolyte membrane fuel cell (PEMFC). The presence of O2 in the feed gas was found to greatly enhance the conversion of ethanol to produce H2 and CO2 as major products. Increase in Ni content above 5 wt% in the catalyst formulation decreased the H2 selectivity while the selectivity of undesirable CH4 and acetaldehyde increased. The 1 wt% Rh/CeO2 catalyst was twice as active as 10 wt% Ni/CO2 catalyst in terms of ethanol conversion and acetaldehyde selectivity and this indicated that Rh was more effective in C–C bond cleavage than Ni. The reaction was found to proceed through the formation of acetaldehyde intermediate, which subsequently underwent decomposition to produce a mixture of CO and CH4 or reforming with H2O and O2 to produce CO, CO2 and H2. The role of Rh is mainly to cleave the C–C and C–H bonds of ethanol to produce H2 and COx while Ni addition helps converting CO into CO2 and H2 by WGS reaction under the conditions employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号