首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the sol–gel method was employed to prepare zinc oxide (ZnO) thin films as cathode buffer layers for inverted organic solar cells (IOSCs). We used a low temperature sol-gel process for the synthesis of ZnO thin films, in which the molar ratio of zinc acetate dihydrate (ZAD) to ethanolamine (MEA) was varied; subsequently, using the thin films, we successfully fabricated inverted solar cells on flexible plastic substrates. A ZnO sol–gel was first prepared by dissolving ZAD and MEA in ethylene glycol monomethyl ether (EGME). The molar ratios of ZAD to MEA were set as 1:1.2, 1:1, and 1:0.8, and we investigated the characteristics of the resulting ZnO thin films. We investigated the optical transmittance, surface roughness, and surface morphology of the films. Then, we discussed the reasons about the improvement of the device efficiency. The devices were fabricated using the ZnO thin films as cathode buffer layers. The results indicated that the morphology of the thin films prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 changed to a rippled nanostructure after two-step annealing. The PCE was enhanced because of the higher light absorption in the active layer caused by the nanostructure. The structure of the inverted device was ITO/ZnO/P3HT:PC61BM/MoO3/Ag. The short-circuit current densities (8.59 mA/cm2 and 8.34 mA/cm2) of the devices with films prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 ratios, respectively, and annealed at 125 °C were higher than that of the device containing the ZnO thin film that was annealed at 150 °C. Inverted solar cells with ZnO films that were prepared using the ZAD to MEA ratios of 1:1 and 1:0.8 and annealed at 125 °C exhibited PCEs of 3.38% and 3.30%, respectively. More than that, PCEs of the flexible device can reach up to 1.53%.  相似文献   

2.
Nanocomposite buffer layer based on metal oxide and polymer is merging as a novel buffer layer for organic solar cells, which combines the high charge carrier mobility of metal oxide and good film formation properties of polymer. In this work, a nanocomposite of zinc oxide and a commercialized available polyethylenimine (PEI) was developed and used as the cathode buffer layer (CBL) for the inverted organic solar cells and p-i-n heterojunction perovskite solar cells. The cooperation of PEI in nano ZnO offers a good film forming ability of the composite material, which is an advantage in device fabrication. In addition, power conversion efficiency (PCE) of the ZnO:PEI CBL based device was also improved when compared to that of ZnO-only and PEI-only devices. The highest PCE of P3HT:PC61BM and PTB7-Th:PC61BM devices reached to 3.57% and 8.16%, respectively. More importantly, there is no obvious device performance loss with the increase of the layer thickness of ZnO:PEI CBL to 60 nm in organic solar cells, which is in contrast to the PEI based devices, whose device performance decreases dramatically when the PEI layer thickness is higher than 6 nm. Such a nano composite material is also applicable in inverted heterojunction perovskite solar cells. A PCE of 11.76% was achieved for the perovskite solar cell with a thick ZnO:PEI CBL (150 nm) CBL, which is around 1.71% higher than that of the reference cell without CBL, or with ZnO CBL. In addition, stability of the organic and perovskite solar cells having ZnO:PEI CBL was also found to be improved in comparison with that of PEI based device.  相似文献   

3.
Ga-doped ZnO(GZO) is investigated as an electron transport layer in organic solar cells based on a promising donor: acceptor system of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldode-cyl)-2,2′; 5′,2″; -5″,2‴-quaterthio-phen-5,5‴-diyl)] (PffBT4T-2OD):phenyl-C71-butyric acid methyl ester (PC70BM). With the inverted geometry having a configuration of ITO/GZO (40 nm)/PffBT4T-2OD:PC70BM (270 nm)/MoO3 (20 nm)/Al (100 nm), maximum power conversion efficiency (PCE) of 9.74% has been achieved, while it is limited at 8.72% for devices with undoped ZnO. Our study based on the structural, morphological, compositional, and electrical characterizations indicate that suggests enhanced device performance of the GZO-based devices resulted mainly from the improved electrical properties of Ga-ZnO thin films as compared to undoped ZnO.  相似文献   

4.
A solution-processed, annealing-free TiO2 nanocrystalline particles (TiO2 NPs) as an interface modification layer was inserted in organic photovoltaics (OPVs), in which the widely used polymer poly (3-hexyl thiophene) (P3HT), a low band gap alkoxylphenyl substituted [1,2-b:4,5-b′] dithiophene-based polymer (PBDTPO-DTBO), and a soluble small molecule benzodithiophene derivative (TIBDT) were used as the donor material, respectively. The annealing-free TiO2 NPs could be easily spin-coated upon the surface of organic active layers, and showed comparable properties to thermal-annealed ones. The power conversion efficiencies (PCEs) of OPV devices could be enhanced dramatically with inserting an annealing-free TiO2 NPs layer. The PCEs of OPV devices based on P3HT:PC61BM, PBDTPO-DTBO:PC71BM and TIBDT:PC61BM bulk heterojunctions were improved by 28%, 15% and 27%, respectively, with an annealing-free TiO2 NPs layer, in which the highest PCE of 5.76% was achieved in PBDTPO-DTBO:PC71BM OPVs. The solution-processed, annealing-free TiO2 NPs thin films show great potential applications in the fabrication of large-area OPVs by printing or coating techniques on flexible polymer substrates. In particularly, it would promote to fabricate solution-processed, annealing-free OPV devices with suitable hole transport layer and organic/polymer active materials.  相似文献   

5.
Large-area photovoltaic devices have been fabricated using the blade coating technique. In this study, the use of accelerated blade motion in this technique significantly improved the thickness uniformity of blade-coated layers of polymer solar cells on an A4 glass substrate. Two types of active layers, P3HT:PC61BM and POD2T-DTBT:PC71BM, were studied. For the P3HT:PC61BM film, a thickness of 221 ± 14 nm was realised in a 12 × 15 cm2 active region with a coating blade acceleration of 8 mm/s2. For the POD2T-DTBT:PC71BM film, a thickness of 98 ± 6 nm was realised with a coating blade acceleration of 10 mm/s2. Ten cells, each measuring 0.9 cm × 12 cm and monolithically fabricated, were connected in series, yielding a total active area of 108 cm2. The power conversion efficiency of the resulting 10-cell module was 2.66% and 3.64% for P3HT:PC61BM and POD2T-DTBT:PC71BM, respectively. The blade coating technique involving the accelerated blade motion is therefore useful for fabricating low-cost large-area organic solar cells, and it may be a promising alternative for the commercialisation of organic solar cells.  相似文献   

6.
In this work, we propose a facile microwave-assisted approach for annealing sol-gel derived ZnO films to serve as electron transport layers (ETLs) for inverted bulk heterojunction polymer solar cells. We have demonstrated an impressive enhancement in performance for devices based on a poly (3-hexylthiophene) (P3HT): (6,6)-phenyl-C61-butyric acid methyl ester (PC61BM) system employing the microwave-annealed ZnO (ZnO (MW)) ETLs in comparison to the cases using the conventional hotplate-annealed ZnO (ZnO (HP)) ones. The better electron transport in the device with the ZnO (MW) ETL is mainly ascribed to the preferable interfacial contact as evidenced by the morphology characteristics. Furthermore, the comprehensive analyses conducted from the light intensity dependent photocurrent and photovoltage measurements, the capacitance-voltage characteristics, and the alternating current impedance spectra suggest that the utilization of the ZnO (MW) ETLs can effectively suppress trap-assisted recombination as well as charge accumulation at the interface between P3HT: PC61BM layers and ZnO layers, which is responsible for the enhanced device performance.  相似文献   

7.
《Organic Electronics》2014,15(5):1035-1042
We report the development and application of high-quality zinc oxide nanoparticles (ZnO NPs) processed in air for stable inverted bulk heterojunction solar cells as an electron extraction layer (EEL). The ZnO NPs (average size ∼11 nm) were dispersed in chloroform and stabilized by propylamine (PA). We demonstrated that the ZnO NP dispersion with 4 vol.% of PA as stabilizer can be used in air directly and remains clear up to one month after preparation. Our inverted solar cells consisted of a blade-coated poly(N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (1: 4 by weight) active layer sandwiched between a ZnO electron extraction layer and a MoO3/Ag anode. All solar cells with ZnO films fabricated in air using PA-stabilized ZnO dispersions prepared within a time window of one month exhibited power conversion efficiencies (PCE) above 4%. In contrast, if the ZnO film was prepared in air using regular un-stabilized ZnO NP dispersion, the PCE would drop to 0.2% due to poor film quality. More interestingly, X-ray photoelectron spectroscopy and nuclear magnetic resonance measurements indicated that the PA ligands were not covalently bonded to ZnO NPs and did not exist in the deposited ZnO films. The spin-cast ZnO thin films (without any thermal treatment) are insoluble in organic solvents and can be directly used as an EEL in solar cells. This feature is beneficial for fabricating organic solar cells on flexible polymer substrates. More importantly, our non-encapsulated inverted solar cells are highly stable with their PCEs remaining unchanged after being stored in air for 50 days.  相似文献   

8.
9.
This paper presents a high efficiency (~3.8%) inverted organic photovoltaic devices based on a P3HT:PCBM bulk heterojunction (BHJ) blend with improved electron- and hole-selective contact layers. Zinc oxide (ZnO) nanoparticle films with different thicknesses are deposited on the transparent electrodes as a nano-porous electron-selective contact layer. A thin gold film is used between the BHJ photoactive layer and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), which improves the wettability and significantly enhances the stability of the device (>50 days of air exposure). Photovoltaic device parameters such as power conversion efficiency (PCE) and external quantum efficiency (EQE) are systematically examined for inverted devices with different thicknesses of ZnO and gold layers in comparison to the non-inverted and reference inverted devices with no contact layers. The optimized organic devices with ZnO and Au contact layers show exceptional short circuit currents (in excess of 13 mA/cm2), in comparison to the reference devices, which is related to increased quantum efficiency of the device observed in measured EQE experiments. These results are important for development of high efficiency and stable all-printed organic solar cells and point out the role of contact layers, in particular, ZnO conductivity and morphology in the device performance.  相似文献   

10.
Although conventional laser ablation (CLA) method has widely been used in patterning of organic semiconductor thin films, its quality control still remains unsatisfied due to the ambiguous photochemical and photothermal processes. Based on industrial available near‐infrared laser source, herein, a novel “layer‐filter threshold” (LFT) technique is proposed, which involves the decomposition of targeted “layer‐filter” and subsequent explosive evaporation process to purge away the upper layers instead of layer‐by‐layer ablation. For photovoltaic device with structure of metal/blend/PEDOT:PSS/ITO/glass, the PEDOT:PSS layer as the “layer‐filter” is first demonstrated to be effective, and then the merged P1–P2 line and metal electrode layer are readily patterned through the “self‐aligned” effect and regulation of ablation direction, respectively. The correlation between laser fluence and explosive ablation efficacy is also investigated. Finally, photovoltaic modules based on classical P3HT:PC61BM and low‐bandgap PBDT‐TFQ:PC71BM systems are separately fabricated following the LFT technique. It is found that over 90% of geometric fill factor is achieved while device performances maintain in a limited change with increased number of series cells. In comparison to conventional laser ablation methods, the LFT technique does not require sophisticated instruments but reaches comparable processing accuracy, which shows promising potential in the fabrication and commercialization of organic semiconductor thin‐film devices.  相似文献   

11.
In bulk heterojunction (BHJ) solar cells, the molar mass ratio of donor-acceptor polymers, the annealing temperature (Tan) and the cathode buffer layer plays very consequential role in improving the power conversion efficiency (PCE) by tuning the film morphology and enhancing the charge carrier dynamics. A comprehensive understanding of each of these factors is essential in order to optimize the performance of organic solar cells (OSCs). Albeit there are several fundamental reports regarding these factors, an altogether meticulous correlation of these physical processes with experimental evidence of the photo active layer are required. In this work, we systematically analyzed the influence of different molar mass ratio, the annealing temperature (Tan) and the cathode buffer layer of rrP3HT:PC71BM based BHJ solar cells and their corresponding photovoltaic performances were correlated carefully with their thin film growth structure and energy level diagram. The device having 1:0.8 molar mass ratio of rrP3HT:PC71BM and Tan = 150 °C annealing temperature with Bathocuproine (BCP) as the cathode buffer layer having ITO/PEDOT:PSS/rrP3HT:PC71BM (molar mass ratio = 1:0.8; (Tan = 150 °C)/BCP/Al) configuration showed the best device performance with PCE, ɳ = 4.79%, Jsc = 14.21 mA/cm2, Voc = 0.58 V and FF = 57.8%. This drastic variation in PCE of the device having BCP/Al as the cathode contact compared to the other device configurations is due to the coalesced effects of better hole-blocking capacity of BCP along with Al and better phase separation of the active blend layer at 150 °C annealing temperature. These results explicate the cumulate role of all these physical parameters and their combined contribution to the PCE amendment and overall device performance with rrP3HT:PC71BM based organic BHJ solar cell.  相似文献   

12.
Filter-free narrowband photomultiplication-type planar heterojunction (PHJ) organic photodetectors (PM-PHOPDs) are first realized by employing a thick front donor layer and an ultrathin PC71BM layer. The thick front donor layer is employed as an optical field adjusting (OFA) layer. The sequentially coated PC71BM will diffuse slightly into OFA layer, which works as interfacial electron traps to capture photogenerated electrons for assisting hole tunneling injection. The P3HT/PC71BM-based PM-PHOPDs exhibit narrowband response with full-width of half-maximum of 32 nm and external quantum efficiency (EQE) of 1700% at 650 nm under −20 V bias. Due to the enhanced hole transport and reduced charge recombination in PHJ compared to those in bulk heterojunction (BHJ), the EQE of P3HT/PC71BM-based narrowband PM-PHOPDs is twice as P3HT:PC71BM BHJ-based narrowband PM-OPDs under the same bias. The response peak of PM-PHOPDs is adjusted from 650 to 695 or 745 nm by incorporating SMPV1 or DRCN5T in OFA layers due to the red-shifted absorption edge. The EQEs of 3600% at 695 nm and 870% at 745 nm are obtained for P3HT:SMPV1 and P3HT:DRCN5T-based PM-PHOPDs under −20 V bias, respectively. This work provides a smart strategy to achieve narrowband PM-OPDs by designing different OFA layers.  相似文献   

13.
Interlayers in organic solar cells (OSCs) are used to reduce energy barriers for charge injection/extraction, act as optical spacers, introduce carrier selectivity and increase organic/contact compatibility. To date, the most widely used inorganic interlayers are metal oxides such as TiO2 and ZnO. However, these materials require harsh deposition conditions that could damage the organic active layers, and hence are generally used in inverted devices. Here we show, for the first time, that judicious selection of materials and processing conditions allow the use of an atomic layer deposition (ALD) system to deposit thin conformal ZnO interlayers on bulk heterojunctions (BHJs). ALD-ZnO interlayers were utilized as electron transporting layers (ETLs) in OSCs and compared to similar devices with solution deposited ZnO nanoparticle (np) ETLs. OSCs with ALD-ZnO ETLs exhibited higher photocurrent densities, Jsc, but lower open circuit voltages, Voc. The low Voc is associated with the presence of pinholes and an offset between the ALD-ZnO and PC70BM electron conducting states. This offset results from traps and acceptor sites generated during the low temperature ALD process. To recover the Voc we introduced a fluorinated phosphonic acid (PA) additive to the blend. We suggest that the additive migrates to the film surface, interacts with the ZnO to produce a denser layer and to passivate traps, effectively improving the device shunt resistance and energy level alignment and increasing Voc. Overall, the devices with PA and ALD-ZnO ETLs possess significantly higher power conversion efficiencies (PCEs) than those with np-ZnO ETLs. For example, the champion ALD-ZnO device PCE is 3.5%, while that with np-ZnO is 2.75%.  相似文献   

14.
The photon harvesting of the photoactive layer within a multilayered polymer solar cells (PSCs) greatly affects the output electric power of the devices. For PSCs, the device performance is very sensitive to the photoactive layer thickness. Therefore, how to enhance the light absorption of the photoactive film with fixed thickness is still a big challenge. Plasmonic enhancement induced by noble metal nanoparticles has been proved to be an effective way to enhance light trapping inside the photoactive film without increasing the thickness of film. By incorporating Au decahedra into the poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) anode buffer layer, high performance plasmonic PSCs based on P3HT:PC60BM and PBDT-TS1:PC70BM were fabricated and the light response of the PSCs are greatly improved in a broadband wavelength, resulting in a remarkable enhancement in short-circuit current density. The calculation results of finite difference time domain (FDTD) confirm that the plasmonic effects induce enhancement in device performance. Upon optimization, the best power conversion efficiency (PCE) of the device based on P3HT:PC60BM and PBDT-TS1:PC70BM reaches 4.14% and 10.29%, respectively, among the best values reported in literature. These results can provide valuable guidelines for the design of metal nanostructures for organic photovoltaic applications.  相似文献   

15.
Thin-films of Zinc Tin Oxide (ZTO) with an extremely high charge carrier mobility and superior optical transmittance are synthesized using a simple solution method. These ZTO films have been systematically studied for the application in inverted polymer solar cells (PSCs). The Hall effects measurements show that the charge mobility of the ZTO semiconductor is over 16.5 cm2.V−1.S−1, which is the highest mobility value ever reported for oxide buffer made by using solution process. By applying the ZTO buffer layer in the inverted PSCs of P3HT:PC61BM, the power conversion efficiency of the device is 30% higher than that of the devices made with other common buffer layers such as ZnO and TiO2. Light intensity-dependent JV studies and PL measurements also indicate that ZTO buffer layer reduces surface recombination. This work demonstrates that the solution-synthesized ZTO is a promising new buffer layer with superior electron extraction capability for the solar cells.  相似文献   

16.
《Organic Electronics》2014,15(9):1942-1950
Electron transporting layers (ETLs) in inverted polymer solar cells (I-PSCs) were fabricated by spin coating a colloidal dispersion of ZnO nanoparticles (NPs), and the effects of ultraviolet–ozone (UVO) treatment on the ZnO NP ETLs were investigated. The brief UVO treatment (<5 min) could considerably improve the performance of the resulting I-PSCs (∼30% increase in power conversion efficiency); whereas, excessive UVO treatment (>10 min) caused significant degradation. The characterization of the ZnO ETLs as a function of the UVO treatment duration revealed that brief treatment can remove the residual organic stabilizer molecules on the surface of the ZnO films by UV induced decomposition mechanism. However, excessive treatment can generate additional defects on/within the ZnO films, which can induce charge recombination. This effect was further confirmed by the thermal treatment of the ZnO ETLs at a high temperature (280 °C) at which the organic surfactants could be removed. Flexible I-PSCs were also fabricated using indium doped tin oxide coated plastic substrates and the usefulness of the room temperature UVO treatment was further confirmed in view of its potential applicability in flexible devices.  相似文献   

17.
We demonstrate the usefulness of RF magnetron sputtering ZnO thin film at softening temperature, as interfacial barrier layer in air stable flexible inverted organic photovoltaic devices. We investigate the influence of annealing on the ZnO crystallinity, on the ITO substrate morphology and charge transport at the ZnO/active layer interface. The photo-physical and structural characteristics of P3HT beside ZnO interfacial layer and the photovoltaic device performances were also studied using UV–vis spectroscopy, photoluminescence (PL) and J-V characteristic. Finally, we study the interfacial stability of devices with and without ZnO interfacial layer in both normal and inverted structure OPVs. We show that under optimized sputtering conditions, higher order and orientation structure of P3HT, the ZnO thermally annealed beside active layer offers better efficiency of contact between the active layer and interfacial layer. We also show that ZnO annealed at a softening temperature of 180 °C is functional for both photovoltaic devices (rigid and plastic substrates), leading to improved performance and stability of plastic solar cell devices.  相似文献   

18.
Nanocolumnar C60 films for inverted organic photovoltaic cells (OPVs) were fabricated by glancing angle deposition (GLAD), and morphologies depending on variation in deposition angle were studied. To complete the OPV devices, small molecules of the donor material 3-Q were spin coated into the C60 films. In order to avoid the difficulties of solvent stability of the C60 films, acetone was used as the process solvent for spin coating. The nanocolumnar morphology improves exciton harvesting by increasing absorbance while providing an effective conductive path for charge carriers. The resulting GLAD C60/3-Q devices outperformed both planar devices and PC61BM:3-Q bulk heterojunctions with threefold and twofold short-circuit current increases, respectively.  相似文献   

19.
We synthesized a novel wide bandgap polymer, PDTFBT, forming a weak donor (WD)-weak acceptor (WA) structure for use in organic photodetectors (OPDs) and organic solar cells (OSCs). The fluorination in the D unit and the alkoxy substitution in the A unit induced WD and WA properties, respectively. The WD-WA structure of PDTFBT effectively broadened the bandgap compared to typical D-A structures, and the S-F and S-O dipole-dipole interactions induces a highly planar backbone structure with excellent π-π stacking in the vertical direction. In OPDs, conformationally less disordered PDTFBT polymer retained the constant responsivity and significantly improved the detectivity of PDTFBT:PC71BM devices even with a thick active layer of 470 nm, contrary to the variation in the responsivity of P3HT:PC61BM devices depending on the thickness. In OSCs, the deep HOMO energy level (−5.57 eV) of PDTFBT led to high Voc of 0.92 V in PDTFBT:PC71BM devices, which was 0.3 eV higher than that of P3HT:PC61BM devices (0.62 V), resulting in 1.8-fold enhanced power conversion efficiency. We demonstrated that the WD-WA structure with S-F and S-O interactions is highly promising strategy to make wide bandgap polymers for organic photodetectors and for the bottom cell of tandem architecture.  相似文献   

20.
A new method for direct patterning of organic optoelectronic/electronic devices using a reconfigurable and scalable printing method is reported by Vladimir Bulovic and co‐workers on p. 2722. The printing technique is applied to the fabrication of high‐resolution printed organic light emitting devices (OLEDs) and organic field effect transistors (OFETs). Remarkably, the final print‐deposited films are evaporated onto the substrate (rather than solvent printed), giving high‐quality, solvent‐free, molecularly flat structures that match the performance of comparable high‐performance unpatterned films. We introduce a high resolution molecular jet (MoJet) printing technique for vacuum deposition of evaporated thin films and apply it to fabrication of 30 μm pixelated (800 ppi) molecular organic light emitting devices (OLEDs) based on aluminum tris(8‐hydroxyquinoline) (Alq3) and fabrication of narrow channel (15 μm) organic field effect transistors (OFETs) with pentacene channel and silver contacts. Patterned printing of both organic and metal films is demonstrated, with the operating properties of MoJet‐printed OLEDs and OFETs shown to be comparable to the performance of devices fabricated by conventional evaporative deposition through a metal stencil. We show that the MoJet printing technique is reconfigurable for digital fabrication of arbitrary patterns with multiple material sets and high print accuracy (of better than 5 μm), and scalable to fabrication on large area substrates. Analogous to the concept of “drop‐on‐demand” in Inkjet printing technology, MoJet printing is a “flux‐on‐demand” process and we show it capable of fabricating multi‐layer stacked film structures, as needed for engineered organic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号