首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquid-phase catalytic aerobic oxidation of toluene by [T(p-Cl)PPFe]2O was studied in a series of three stirred tank reactors. The effects of operation mode (including semi-batch and continuous operation), reaction temperature, catalyst concentration, average residence time, and air flow rate on the oxidation process were examined. The experimental results showed that continuous oxidation had no advantage over the total yield and selectivity of benzaldehyde and benzyl alcohol in comparison with semi-batch oxidation. And the reaction temperature was the most significant factor influencing on continuous oxidation of toluene. It is also found that adopting sequentially decreased temperature in the three series reactors could improve the yield and selectivity of benzaldehyde and benzyl alcohol in this process. Under which at the higher conversion of toluene, the total yield to benzaldehyde and benzyl alcohol increased 17.05% or 43.62% respectively in comparison with adopting sequentially increased or same temperature in the three series reactors.  相似文献   

2.
Previous work showed that the V–Ag–O complex oxides exhibited quite good catalytic behavior for the selective oxidation of toluene to benzaldehyde. In this work, TiO2 was added into V–Ag–O by co-precipitation with a sol–gel method. Structural characterizations using X-ray diffraction and Fourier transform infrared spectroscopy indicated the phases of Ag2V4O11, Ag1.2V3O8 and TiO2 in the V–Ag–O/TiO2 before the reaction. No complex oxide phases involving titanium were observed. Thus, the addition of TiO2 seemed to generate the interfaces between TiO2 and the silver vanadates. The Ag2V4O11 and part of Ag1.2V3O8 were converted into Ag0.68V2O5 and metallic Ag during the reaction. The results of temperature programmed reduction, microcalorimetric adsorption of NH3 and isopropanol probe reaction in air revealed that the addition of TiO2 might increase both the surface acidity and redox ability of the catalysts. The increased redox ability seemed to improve the activity for the oxidation of toluene, but the increased surface acidity might lead to the decrease of selectivity to benzaldehyde. The V–Ag–O/TiO2 with 20% TiO2 exhibited significantly improved catalytic behavior for the selective oxidation of toluene to benzaldehyde, as compared to the un-promoted V–Ag–O catalyst. The conversion of toluene reached 7.3% over the V–Ag–O/20%TiO2 at 613 K with 95% selectivity to benzaldehyde.  相似文献   

3.
A benign approach is proposed for the highly efficient synthesis of cyclohexanone oxime through nonsolvent liquid-phase oxidation of cyclohexylamine with dioxygen over supported TiO2/silica gel. The as-prepared catalyst was characterized by Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD) analyses. The results indicate that titanium active sites could be grafted on silica gel supports as catalytic centres. Various parameters such as reaction time and reaction temperature were systematically optimized; the results showed that supported 20%TiO2/silica gel exhibited the best catalytic effect with 63.2% of amine conversion and 86.3% of selectivity to CHO. A possible pathway is proposed for cyclohexylamine oxidation over supported TiO2/silica gel. The method developed in this study using dioxygen as the oxidant and inexpensive TiO2/silica gel as an efficient catalyst has incredible industrial application potential for green synthesis of cyclohexanone oxime.  相似文献   

4.
Initial reaction steps in photocatalytic oxidation of aromatics   总被引:3,自引:0,他引:3  
Transient reaction at 273 and 300 K was used to study the initial steps in the photocatalytic oxidation (PCO) of benzene, toluene, p-xylene, mesitylene, benzyl alcohol, benzaldehyde, and m-cresol adsorbed on a thin film of TiO2 catalyst. Adsorbed aromatics were oxidized by O2 photocatalytically in the absence of gas-phase aromatics, and the compounds remaining on the surface were characterized by temperature-programmed oxidation and desorption (TPO, TPD). Benzene and methyl benzenes oxidize rapidly at 273 or 300 K to form adsorbed intermediates that are more strongly adsorbed and much less reactive than the original aromatic, which is relatively weakly adsorbed on TiO2. The catalyst is expected to be covered with these intermediates during steady-state reaction. The rates of PCO of benzene and methyl benzenes to CO2 are slow relative to complete oxidation of alcohols or chlorinated hydrocarbons. The intermediates do not appear to be alcohols or aldehydes formed by oxidation of a methyl group, nor do they correspond to addition of an hydroxyl to the aromatic ring. Benzyl alcohol oxidizes photocatalytically to benzaldehyde and then to CO2 and H2O during PCO, but adsorbed m-cresol does not photocatalytically oxidize.  相似文献   

5.
The effect of the size of gold particles deposited on CeO2 and TiO2 supports on their catalytic behavior in the aerobic oxidation of benzyl alcohol in different solvents (mesitylene, toluene, and supercritical carbon dioxide) has been investigated. The size of supported gold particles deposited via a colloidal route was in the range 1.3–11.3 nm, as determined by means of EXAFS and HAADF-STEM measurements. The catalytic performance of the supported gold catalysts in the different solvents revealed a significant effect of the gold particle size. Optimal activity was observed for catalysts with medium particle size (ca. 6.9 nm) whereas smaller and bigger particles showed inferior activity. Identical trends for the activity–particle size relationship were found using Au/CeO2 and Au/TiO2 for the reaction at atmospheric pressure in conventional solvents (mesitylene, toluene) as well as under supercritical conditions (scCO2). Selectivity to benzaldehyde was only weakly affected by the gold particle size and mainly depended on reaction conditions. In supercritical CO2 (scCO2) selectivity was higher than in the conventional solvents under atmospheric pressure. All catalysts tested with particle sizes ranging from 1.3 to 11.3 nm showed excellent selectivity of 99% or higher under supercritical conditions.  相似文献   

6.
A new facile and cost-effective process involving the solvent-free oxidation of benzyl alcohol using molecular oxygen as oxidant under controlled microwave irradiation has been developed for the production of chlorine-free benzaldehyde. Influence of different catalyst parameters (different manganese oxides and other kinds of transition metal oxides) and reaction conditions (reaction period and temperature) on the process performance has been studied. Under optimized reaction conditions, the MnO2 catalyst showed a superior catalytic performance in the highly selective oxidation of benzyl alcohol as compared to other manganese oxide materials such as MnO, Mn2O3 and Mn3O4. Moreover, a very stable catalytic activity as a function of cycling test was observed for the MnO2 catalyst.  相似文献   

7.
在少量简单金属钴卟啉的催化下,无需外加溶剂及反应引发剂,甲苯可由空气直接选择性液相催化成为苯甲醛及苯甲醇。反应结果表明反应时间、反应温度、压力、催化剂用量及空气流量等工艺参数的变化对反应都有影响。在165℃、0.8MPa、3.4ppm及40L/h空气流量的最佳反应条件下,甲苯的转化率可以达到8.7%,同时醛醇选择性可以达到近60%。同传统空气氧化甲苯制取苯甲醛体系相比,此催化体系工艺条件简单、清洁无污染,产品质量好。研究结果表明,金属卟啉存在下的催化空气氧化甲苯制取苯甲醛及苯甲醇的反应经历了一个由金属卟啉引发的自由基反应历程。  相似文献   

8.
Catalytic activities of a series of metalloporphyrin complexes in selective aerobic oxidation of toluene were investigated.The effects of different central metal ions in metalloporphyrins[T(p-Cl)PPMCl(M=Fe,Co,Mn,Cu)] on the reaction course had been examined and it was found that T(p-Cl)PPCu presented the highest catalytic activity in the reaction.The reaction conditions of toluene oxidation were optimized by using orthogonal experiment design.Five relevant factors were investigated:temperature,air pressure,catalyst loading,air flow rate and reaction time.The effects of the five factors on both toluene conversion and total yield of benzaldehyde and benzyl alcohol were discussed.The research results showed that the reaction temperature was the most significant factor influencing toluene oxidation.On the basis of the margin analysis,the optimum conditions for the toluene conversion and the total yield of benzaldehyde and benzyl alcohol respectively were achieved,under which the toluene conversion was up to 14.67%and the total yield of benzaldehyde and benzyl alcohol reached 5.89%.  相似文献   

9.
Aerial oxidation of substituted aryl aromatic hydrocarbons were carried out using Co/Mn/Br catalyst system in water-dioxane medium in the range 14–56 bar air and temperature 383–423 K. The combination of optimum catalyst concentration of salts Co(OAc)2, Mn(OAc)2 and NaBr (1:3:10 molar ratio) in water-dioxane (1:2 mole ratio) is found catalyze aerial oxidation of substituted aryl aromatic to give corresponding oxygenated products. Under the optimized conditions, p-cymene gave p-isopropyl benzaldehyde (33.1%), p-isopropylbenzyl alcohol (54.7%) and p-isopropyl benzoic acid (3.3%), respectively, at p-cymene conversion 40.2%. Similarly, oxidation of p-methoxy toluene gave p-methoxy benzaldehyde (87.4%), benzyl alcohol (5.5%), and p-methoxy benzoic acid (6%), while oxidation of p-tert-butyl toluene yielded p-tert-butyl benzaldehyde (87%), p-tert-butyl benzyl alcohol (5.7%) and p-tert-butyl benzoic acid (6.1%), at conversions 16.4% and 36.1%, respectively. It is found that Co/Mn/Brcatalyst system in water-dioxane medium is effective in the aerial oxidation of substituted aromatic hydrocarbons to get corresponding alcohol and aldehydes in greater yields.  相似文献   

10.
The photocatalytic oxidation of benzyl alcohol into benzaldehyde proceeded with high conversion and selectivity on a TiO2 photocatalyst by O2 under visible light irradiation. Surface complex formed by the interaction of benzyl alcohol with the Ti sites and/or surface OH groups of TiO2 play an important role in the absorption of visible light and unique selective photocatalytic reaction.  相似文献   

11.
A copper(II) complex containing tetradentate N2O2 Schiff base ligand immobilized into aminopropyl-functionalised MCM-41 (mobile crystalline material number 41), was prepared and characterized by Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, N2 adsorption–desorption and inductively coupled plasma analysis techniques. The novel heterogeneous catalyst, MCM-41-pr-NH2-CuL, can be successfully applied for efficient and selective oxidation of different primary and secondary alcohols to the corresponding carbonyl compounds using hydrogen peroxide as an oxidant in acetonitrile at 60 °C. The effect of reaction parameters such as solvent, amount of catalyst, temperature and kind of oxidant on the oxidation of benzyl alcohol was also studied. The prepared catalyst could be recovered and reused four times without important loss of its catalytic performance. The heterogeneous MCM-41-pr-NH2-CuL catalyst was found to be catalytically more active in the oxidation of alcohols compared to the similar type of copper(II) Schiff base complex in homogeneous media under the same reaction conditions.  相似文献   

12.
Hf/SBA-15 catalyst containing highly ordered two-dimensional hexagonal mesoporous silica with a large surface area is prepared in a facile one-step sol–gel method with hafnia content ranging from 2.5 to 10%. The synthesized catalyst is characterized by X-ray diffraction analysis, N2 adsorption–desorption isotherm, scanning electron microscope and transmission electron microscope. The oxidation state and Lewis acidic properties of 10% Hf/SBA-15 are investigated by diffuse reflectance UV–Vis technique, X-ray photoelectron spectroscopy and pyridine-adsorbed FT-IR analysis. The catalytic activity of Hf/SBA-15 is employed in the acetalization of glycerol with acetophenone and benzaldehyde, order of activity of the catalyst is 10 > 5 > 2.5% Hf/SBA-15. The 10% Hf/SBA-15 is given 43 and 21% selectivity of six-membered (1,3-dioxane) and five-membered (1,3-dioxolane) acetals. Hence, this catalyst is further exploited in the acetalization of glycerol with substituted acetophenone and benzaldehyde. The catalyst could be recycled for five times without a significant decrease in activity.  相似文献   

13.
The unique and significant promotion effect of water has been evidenced by the selective oxidation of benzyl alcohol to benzaldehyde over Au/TiO2 catalysts. Water has dual promotional functions in the reaction system: to help form unique microdroplets in a multiphase reaction system and to assist the oxygen adsorption and activation. The conversion of benzyl alcohol at a molar ratio of water to solvent (p-xylene) of 7 is 7 times higher than in the absence of water. The present work has highlighted the potential of Au/TiO2 catalysts in aerobic oxidation of alcohols in the unique multiphase reaction system with water as promoting solvent.  相似文献   

14.
The photodegradation of BTEX (benzene, toluene, ethylbenzene and xylene) in a photocatalytic fluidized bed reactor with TiO2/SiO2 was investigated. The TiO2 film was prepared using the sol-gel method and coated onto silica-gel powder. The effects of the superficial gas velocity and SiO2 size on the photodegradation of BTEX were examined in a fluidized bed reactor. At steady-state operation, above 79, 79, 99, 98, and 98% removal efficiencies were achieved for benzene, toluene, ethylbenzene, m, p-xylene and o-xylene, respectively, under optimal conditions (2.0 U mf of superficial gas velocity and 1.43 of height/diameter ratio). The reaction product such as CO2 was detected and intermediate products such as benzaldehyde, malonic acid, acetaldehyde, and formic acid were identified from the photocatalytic reaction. Also, small amounts of benzoic acid and benzyl alcohol were found through analyzing the intermediate species adsorbed on the photocatalysts. The experimental results can lead to the development of an efficient photocatalytic treatment system that utilizes solar energy and TiO2/SiO2 photocatalysts.  相似文献   

15.
Silver-containing hexagonal mesoporous silica (Ag-HMS) catalysts with different Si/Ag ratios were synthesized by one-pot hydrothermal method for gas-phase selective oxidation of benzyl alcohol to benzaldehyde. The samples were characterized by nitrogen adsorption, X-ray diffraction, scanning electron micrograph, transmission electron micrograph, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectra. It was found that the Ag-HMS catalysts with different Ag loadings (0.55-3.50 wt.%) and different Ag particle sizes (5-32 nm) showed a similar level of catalytic property because they possess a similar Ag surface area. The Ag-HMS catalyst with a Ag loading of 2.81 wt.% exhibited excellent catalytic properties at 583 K with a high benzyl alcohol conversion of near 100%, benzaldehyde selectivity of around 96.0%, and benzaldehyde yield of about 96.0%, superior to those of other M-HMS catalysts (M = Co, Ce, La, Cu, Sr, Cd, Ni, Mn, V, and Fe). The enhanced catalytic performance could be attributed to the presence of the Ag surface oxygen species generated via oxygen spillover process. The work would be helpful for the development of novel Ag catalysts for selective oxidation of benzyl alcohol to obtain high quality of benzaldehyde and understanding the catalytic mechanism.  相似文献   

16.
An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene   总被引:6,自引:0,他引:6  
An improved process for the oxidation of toluene to obtain benzaldehyde and benzyl alcohol with high selectivities using a Co/Mn/Br composite catalytic system in liquid phase is described. A protocol for recovery and reuse of the composite catalyst is developed. The use of low concentrations of composite catalytic systems aimed at minimizing corrosion of the reaction, and higher concentrations of toluene affording higher productivity and recyclability of the catalyst giving high turnover number, are the remarkable achievements of the present methodology. Investigation into the recycle, aging and spectroscopic studies of the catalytic system improves the understanding of the process, chemistry and mechanism of the reaction. As the market demand for each product fluctuates, the dynamic system developed here to meet changing demands is very important to obtain one of the products in excess quantities with a change of the ratio of Br/Cl.  相似文献   

17.
The oxidation of benzyl alcohol to benzaldehyde has been investigated in the absence of solvent using zeolite-supported Au and Au–Pd catalysts. Three zeolites were investigated, ZSM-5, zeolite β and zeolite Y, and these were contrasted with the titanoslicalite TS-1 and TiO2 as supports. For the Au catalysts the best results are obtained with zeolite β as the support and the conversions were comparable or better than those observed with TiO2 in terms of turn over frequencies. However, the selectivities observed with the acidic zeolites were lower than the non-acidic TS-1 and TiO2. This is due to the subsequent reaction of benzaldehyde via acid catalysed reactions to give benzyl benzoate and its dibenzyl acetal, and, in some cases dibenzylether. Initial catalysts were evaluated with a gold loading of 2 wt% and increasing this to 4 wt% showed the expected increase in activity, indicating that there is scope to improve the performance of these catalysts. The most active catalysts were prepared by impregnation and catalysts prepared by deposition precipitation were considerably less active. Introduction of Pd into the catalyst improved the activity without significantly affecting the selectivity.  相似文献   

18.
Exclusive hydrogenation of benzaldehyde to benzyl alcohol in gas phase continuous operation (393–413 K, 1 atm) was achieved over Au/Al2O3, Au/TiO2 and Au/ZrO2. Synthesis of Au/Al2O3 by deposition–precipitation generated a narrower distribution (2–8 nm) of smaller (mean = 4.3 nm) Au particles relative to impregnation (1–21 nm, mean = 7.9 nm) with increased H2 uptake under reaction conditions and higher benzaldehyde turnover. Switching reactant carrier from ethanol to water resulted in a significant enhancement of selective hydrogenation rate over Au/Al2O3 with 100% benzyl alcohol yield, attributed to increased available reactive hydrogen. This response extends to reaction over Au/TiO2 and Au/ZrO2.  相似文献   

19.
《Catalysis Today》2005,99(1-2):171-177
The catalytic membrane reactor and the inert packed bed membrane reactor were studied in the vapour phase selective oxidation of toluene. Different feeding policies for the membrane were explored and their influence on the selectivity to the desired products (benzaldehyde and benzoic acid) was investigated. The active phase was prepared by depositing vanadium on a Al2O3–TiO2 support prepared through the sol–gel technique. Higher selectivity to benzaldehyde was obtained using the catalytic membrane reactor. Differences were seen in the catalytic membrane reactor performance only when the active phase was heavily charged along the membrane cross-section.  相似文献   

20.
MnO- 4 (0.4 mmol/g)-exchanged Mg-Al-hydrotalcite is an active and highly selective catalyst for the oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide under reflux in the absence of solvent. It also shows high activity for the oxidation of benzaldehyde to benzoic acid. The higher the Mg/Al ratio, the higher is the catalytic activity (in both the reactions) and basicity of the hydrotalcite catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号