首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to investigate the structure of the Pd-La/-Al2O3 catalyst. X-ray diffraction (XRD) and temperature-programmed reduction (TPRd) were used as characterization techniques. Contrary to the assertions in the literature, XRD studies conducted on La/-Al2O3 composite oxides and Pd-La/-Al2O3 catalysts show that Pd catalyzes the solid state reaction between A12O3 and Al2O3 to form LaAlO3. TPRd studies conducted on Pd/-Al2O3, Pd/La2O3, Pd/LaAlO3, and Pd-La/-Al2O3 catalysts suggest that Pd in the Pd-La/-Al2O3 catalyst interacts more strongly with LaAlO3 than with -Al2O3. Reaction studies were conducted to investigate the activity of Pd/-Al2O3, Pd/La2O3, Pd/LaA103, and Pd-La/-Al2O3 catalysts for nitric oxide (NO) reduction. These studies show that Pd/LaAlO3 catalysts are most active for NO removal at stoichiometric and under net reducing conditions.  相似文献   

2.
Cerium modified and chromium-based catalysts using nano-γ-Al2O3 as the carrier were prepared via incipient wetness impregnation method and investigated for the catalytic combustion of methane (CH4). The Cr-based catalysts promoted with 3 wt.% Ce displayed the most effective catalytic activity among all catalysts investigated. In addition, Ce significantly improved the catalytic performance of CH4 combustion by increasing the amount of reaction site [CrO4]ads species on the surface of Cr-based catalysts. Introduction of Ce content also restrained the deactivation of catalysts at high calcination temperature. Cr-based catalysts modified with cerium seem to be a promising cheap and low-temperature catalyst for CH4 combustion.  相似文献   

3.
By analyzing the extended X-ray absorption fine structure (EXAFS) of the Mo K-absorption edge, structural information for both oxidic and sulfided K-MoO3/-Al2O3 catalysts with different potassium content was obtained. The oxidic samples show two backscatterer peaks in the radial distribution function (RDF), which correspond to the Mo-O coordinations in the nearest Mo-O shell. The nearest oxygen atoms are present with large configurational disorder. The RDF for the K/Mo = 0 sample is significantly different from that for crystalline MoO3 and ammonium heptamolybdate. The RDFs for potassium promoted samples are, in some extent, similar to that for ammonium heptamolybdate. The sample with K/Mo = 0.8 and that with K/Mo=1.5 do not show obvious difference in their local Mo-O structures. The EXAFS results support the earlier conclusions from Raman spectroscopy studies on identical samples [7]. When the samples are sulfided, a rearrangement of the local neighbors around Mo atoms takes place, to form small MoS2-like crystallites. The Mo-S and Mo-Mo coordination distances on these catalysts are the same as those in crystalline MoS2, but the coordination numbers are significantly lower than in MoS2. The EXAFS results indicate that Mo species on the K/Mo=0 catalyst mainly consist of Mo-S-Mo units (the basic building units of MoS2), which are highly dispersed and show a higher level of disorder than in MoS2. With the modification by the potassium promoter, Mo species are significantly aggregated and their local neighbors are more similar to those in MoS2, but the Mo species still exist in a state of high dispersion.  相似文献   

4.
Gas-phase dehydration of glycerol to produce acrolein was investigated over commercial catalysts based onγ-Al2O3, viz. A-64, A-56, I-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl?anions, HCl-impregnated sup-ports have been investigated in the dehydration reaction of glycerol at 375 °C. For comparison, various H-zeolites were also examined. It was found that the glycerol conversion over the solid acid catalysts was strongly dependent on their acidity and surface area. And the relationship between the catalytic activity and the acidity of the catalysts was discussed. The outstanding properties of Pt/γ-Al2O3 catalyst systems for the dehydration of glycerol were revealed. Pt/γ-Al2O3 catalyst (AP-64) showed the highest catalytic activity after 50 h of reaction with an acrolein selectivity of 65%at a conversion of glycerol of 90%. Based on these results, catalysts based onγ-Al2O3 appear to be most promising for gas phase dehydration of glycerol.  相似文献   

5.
A very strong promotion effect of the presence of 1000 ppmV C3H8 in the reaction feed on CH4–O2 reaction was found over unsulfated 1%Pt/γ-Al2O3 catalyst. This promotion was further increased on pre-sulfated 1%Pt/γ-Al2O3. The promoting effect of pre-sulfation on the activity of 1%Pt/γ-Al2O3 for propane combustion results in a further improvement on methane combustion due to propane combustion heat which is generated at lower temperatures, activating methane combustion over pre-sulfated 1%Pt/γ-Al2O3 at even lower temperatures relative to unsulfated 1%Pt/γ-Al2O3. These results suggest that small amounts of propane in the gas feed during CH4–O2 reaction over a pre-sulfated Pt/γ-Al2O3 catalyst may eliminate methane emissions at low temperatures from lean-burn NGV exhausts without being deactivated by sulfur poisoning as Pd supported catalysts.  相似文献   

6.
For the oxygen removal from coke oven gas (COG) the catalytic activity of commercial catalysts CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was evaluated after a sulfidation pretreatment and compared to the Pt/γ-Al2O3 reference catalyst. Elemental analysis and temperature-programmed desorption showed that the oxidation reaction and the associated oxidation of active sulfidic centers is the main cause of deactivation despite the presence of other reductants, such as hydrogen. This approach could allow an appropriate sulfide catalyst to be designed for oxygen removal corresponding to the typical COG composition in the presence of H2S.  相似文献   

7.
Co/γ-Al2O3 and CoRe/γ-Al2O3 catalysts have been studied by the steady-state isotopic transient kinetic analysis (SSITKA) technique. It was found that neither the CO partial pressure, the temperature nor the space velocity influences the in situ CO adsorption. The space velocity, H2/CO ratio and temperature was found to affect the intrinsic activity ( ) slightly, while the total pressure and syngas partial pressure had only a negligible effect. The surface concentrations and coverages were, however, unaffected by the space velocity, temperature, total pressure, syngas partial pressure and H2/CO ratio. All changes, however, affected the methane selectivity, indicating that the methane selectivity was not a function of the surface inventory of methane precursors.  相似文献   

8.
《Catalysis communications》2001,2(11-12):369-374
Platinum and Platinum–tin bimetallic catalysts supported on alumina were prepared by co-impregnation of both metallic precursors on the support and used as catalysts for the oxidation of SO2. Platinum dispersion was determined by means of H2–O2 titration. Tin addition (1 and 2 wt%) only slightly decreased the exposed platinum atoms suggesting that tin is mainly over the support. At temperatures lower than 300 °C, SO2 did not react with oxygen. Nevertheless, when the temperature was increased, the SO2 oxidation began. The ignition temperatures for SO2 oxidation (taken at 50% conversion) were 345 °C for 1% Pt/Al2O3 and 520 °C for 1% Pt–2% Sn/Al2O3. The strong displacement on activity suggests that tin plays an important role as inhibitor of the SO2 oxidation reaction.  相似文献   

9.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

10.
A series of CrOy (17.5 wt%)-CeO2 (X wt%)/γ-Al2O3 catalysts (X = 0, 0.5, 2, 5, 8) with various Ce contents were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 550 °C and 0.1 MPa. The prepared catalysts were characterized by BET, H2-TPR, O2-TPD, XPS, XRD, SEM-EDS and Raman spectroscopy. Among the prepared catalysts, the 17.5Cr-2Ce/Al catalyst with the largest amount of lattice oxygen exhibited the best catalytic performance for the dehydrogenation of propane to propylene with lattice oxygen. The decreased presence of oxygen defects and reducibility were the factors responsible for the improved dehydrogenation activity of the catalysts. The CeO2 layer could inhibit the evolution of lattice oxygen (O2−) to electrophilic oxygen species (O2), and the oxygen defects on the catalyst surface were reduced. The inhibited lattice oxygen evolution prevented the deep oxidation of propane or propylene, the average COx selectivity decreased from 24.41% (17.5Cr/Al) to 5.71% (17.5Cr-2Ce/Al), and the average propylene selectivity increased from 60.15% (17.5Cr/Al) to 85.05% (17.5Cr-2Ce/Al).  相似文献   

11.
A series of CrOy (17.5 wt%)-CeO2 (X wt%)/γ-Al2O3 catalysts (X=0, 0.5, 2, 5, 8) with various Ce contents were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 550℃ and 0.1 MPa. The prepared catalysts were characterized by BET, H2-TPR, O2-TPD, XPS, XRD, SEM-EDS and Raman spectroscopy. Among the prepared catalysts, the 17.5Cr-2Ce/Al catalyst with the largest amount of lattice oxygen exhibited the best catalytic performance for the dehydrogenation of propane to propylene with lattice oxygen. The decreased presence of oxygen defects and reducibility were the factors responsible for the improved dehydrogenation activity of the catalysts. The CeO2 layer could inhibit the evolution of lattice oxygen (O2-) to electrophilic oxygen species (O2-), and the oxygen defects on the catalyst surface were reduced. The inhibited lattice oxygen evolution prevented the deep oxidation of propane or propylene, the average COx selectivity decreased from 24.41% (17.5Cr/Al) to 5.71% (17.5Cr-2Ce/Al), and the average propylene selectivity increased from 60.15% (17.5Cr/Al) to 85.05% (17.5Cr-2Ce/Al).  相似文献   

12.
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques—N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis—were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn4+ species was observed for the most stable catalyst.  相似文献   

13.
Acetic acid (HAc) aqueous was used as solvent in wetness impregnation to prepare CeO2-modified γ-Al2O3 support. With the help of HAc, the dispersion of CeO2 on γ-Al2O3 is significantly improved and the size of CeO2 nanoparticles can be controlled through tuning the concentration of HAc aqueous. XPS analysis shows that the percentages of Ce3 + in CeO2 nanoparticles will vary with the size. Then we load CuO on the as-prepared CeO2-modified γ-Al2O3 support and choose NO reduction with CO as a probe reaction to investigate the influences of impregnation solvent on the catalytic properties. The results demonstrate that the CuO/CeO2/γ-Al2O3 prepared in the solvent with volume ratio of 20:1 (H2O:HAc) has the highest activity in NO + CO reaction. Combing the structural characterizations and catalytic performances, we think that the size of the CeO2 nanoparticles should be a key factor that affects the activities of CuO/CeO2/γ-Al2O3. Furthermore, CuO dispersed on CeO2 nanoparticles with an average size of ca. 5 nm should be the highest active sites for NO + CO reaction.  相似文献   

14.
The catalytic activity and selectivity of three PdO-MoO3/-Al2O3 catalysts containing about 2% Pd and 2% Mo were studied for the reduction of NO by h2 in the presence of varying amounts of oxygen at temperatures from 50 to 550 °C. The results are compared with those for PdO/-Al2O3, PdO-MoO3/-Al2O3 containing 2% Pd and 20% Mo, and a commercial Pt-Rh catalyst. In the absence of oxygen, the conversion of NO to N2 and N2O is higher on the three catalysts than it is on PdO/-Al2O3 at 500 and 550 °C. In the presence of oxygen, the yields of N2 and N2O are generally lower on two of the PdO-MoO3/-Al2O3 catalysts than on PdO/-Al2O3.  相似文献   

15.
采用臭氧与TiO2/γ-Al2O2/UV联用技术对降解草酸进行研究.考察了进气流量、草酸初始浓度、催化剂投加量,pH值及温度等因素对草酸降解的影响.研究表明,在一定范围内,随着进气流量的增加、温度的升高都会促使草酸的降解速率加快;溶液pH值对催化臭氧化有比较重要的影响,pH值2时,草酸的去除率最高.  相似文献   

16.
The influence of different treatments (in H2 or in O2 at 250 or 600 °C) of alumina supported Ru catalysts on the total oxidation of propane was investigated. Ruthenium catalysts were prepared using RuCl3 as metal precursor and characterized by H2 chemisorption, O2 uptake, BET, XRD and TEM. The presence of chloride on the catalyst surface was found to exert an inhibiting effect on the activity of Ru. The reduced Ru/γ-Al2O3 catalysts after partial removing chlorine ions were more active than the same samples oxidized at 250 °C. The higher activity of the reduced Ru/γ-Al2O3 catalysts was attributed to the presence of a large amount of active sites on small Ru x O y clusters without well defined stoichiometry or on a poorly ordered layer of a ruthenium oxide on the larger Ru particles. The formation of highly dispersed, but in some extent crystallized RuO2 phase in catalysts oxidized at 250 °C, leads to slightly lower activity of the Ru phase. Strong decline of the activity was found for catalysts oxidized at 600 °C. At this temperature, the Ru particles were completely oxidized to well-crystallized RuO2 oxide, and the mean crystallite size of the Ru oxide phase was much higher (9–25 nm) than that of after oxidation at 250 °C (~4 nm). The effect of the regeneration treatment in H2 on the activity of the Ru/γ-Al2O3 catalysts was also studied. The active ruthenium species for propane oxidation were discussed based on the catalytic and characterization data both before and after activity tests.  相似文献   

17.
The addition of Y2O3 to Ni/α-Al2O3 catalysts was investigated by BET surface area measurements, hydrogen chemisorption, X-ray diffraction, UV–vis diffuse reflectance spectroscopy, X-ray fluorescence, temperature programmed reduction, temperature programmed oxidation and cyclohexane dehydrogenation. Autothermal reforming experiments were performed in order to evaluate the methane conversion and proceeded through an indirect mechanism consisting of total combustion of methane followed by CO2 and steam reforming generating the synthesis gas. The Y2O3·Al2O3 supported catalysts presented better activity and stability in autothermal reforming reaction. Temperature programmed oxidation analysis demonstrated that the addition of Y2O3 resulted in a change of the type or the location of coke formed during reaction. None of the prepared catalyst presented deactivation by sintering under the tested conditions. The improved stability of supported catalysts Y2O3·Al2O3 was the result of minimizing the formation of coke on the surface of nickel particles.  相似文献   

18.
The catalytic activity for the reduction of NO by CO of five PdO-MoO3/-Al2O3 catalysts is compared in the presence of varying amounts of oxygen at reaction temperatures from 25 to 550 °C. The samples were prepared by different methods and contain about 2% of Mo and 2% Pd. Results are compared with the activities and selectivities of PdO/ -A12O3 and PdO-MoO3/-Al2O3 containing 2% Pd and 2% Pd + 20% Mo, respectively. All catalysts showed appreciable activity at temperatures between 300 and 550 °C and at stoichiometric ratios,R, of the oxidizing to reducing gases of 0.1 <R < 1.1. The activity of three PdO-MoO3/ -A12O3 catalysts with low concentrations of Mo and Pd was found to be significantly higher than the activity of PdO/-Al2O3 at 1.1 <R < 1.3 and at temperatures between 300 and 500 °C. The improved activity is ascribed to the interaction of the active metals.  相似文献   

19.
采用臭氧与TiO2/γ-Al2O/UVV联用技术对降解草酸进行研究。考察了进气流量、草酸初始浓度、催化剂投加量、pH值及温度等因素对草酸降解的影响。研究表明,在一定范围内,随着进气流量的增加、温度的升高都会促使草酸的降解速率加快;溶液pH值对催化臭氧化有比较重要的影响,pH值2时,草酸的去除率最高。  相似文献   

20.
A series of NiMoNx/γ-Al2O3 catalysts with various Ni contents were prepared by a topotactic reaction between their corresponding precursors NiO·MoO3/γ-Al2O3 and NH3. The catalysts were characterized using BET, XRD, and H2-TPR techniques, and the HDN activity of pyridine over these catalysts was tested. XRD patterns show that metallic Ni, Mo2N and a new phase of Ni3Mo3N exist in NiMoNx/γ-Al2O3 catalyst. H2-TPR studies indicate that the presence of Ni lowers the reduction temperature of the passivated surface layer of nitrided Mo/γ-Al2O3. The HDN activity for NiMoNx/γ-Al2O3 is much higher than that for NiMoSx/γ-Al2O3. The nitride catalyst with about 5.0 wt% NiO and 15.0 wt% MoO3 in its precursor has the highest specific denitrogenation activity. The appearance of Ni3Mo3N and the synergy between metallic Ni and nitrided Mo are probably responsible for the high activity of NiMoNx/γ-Al2O3 catalyst. The role of Ni in HDN reaction was also investigated. The activities decrease in the order: reduced Ni/γ-Al2O3≥nitrided Ni/γ-Al2O3>partially reduced Ni/γ-Al2O3 and sulfided Ni/γ-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号