首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Z.M. Guo  C.K. Chan  W.Y. Lin 《Fuel》2003,82(9):1091-1101
A presumed joint probability density function (pdf) model of turbulent combustion is proposed in this paper. The turbulent fluctuations of reactant concentrations and temperature are described using a presumed joint pdf of three-dimensional Gaussian distribution based on first and second-order moments of reactant concentration and temperature. Mean reaction rates in both premixed and diffusion combustion are obtained by mean of integration under the presumed joint pdf. This model is applied to predict turbulent premixed combustion of sudden-expansion flow and turbulent jet diffusion methane/air flame. For turbulent premixed combustion, the predicted results of temperature distribution and maximum temperature using the proposed model agree better with the experiment than that using the conventional eddy-breakup (EBU)-Arrhenius model. For the turbulent jet diffusion methane/air flame, the predicted results of velocity, temperature and species concentrations using the proposed model, the Arrhenius, EBU-Arrhenius, and laminar flamelet models are compared with experiment data. Results obtained with the presumed pdf model and that obtained by the laminar flamelet model both agree well with experiments, while results using the other models have a significant difference. The presumed joint pdf model is used to predict the NO formation process, which also agrees well with the experiment data. A unified turbulent combustion model, in which both effects of turbulent diffusion and chemical dynamics are considered, is established for both premixed and diffusion combustion, especially for the process of NO formation.  相似文献   

2.
《Fuel》2007,86(5-6):793-806
The results of an experimental and modelling study of a lifted, non-premixed methane turbulent free jet flame issuing into still air are presented. Detailed in-flame measurements, including the gas temperature, oxygen and NO concentration distributions, are made. In a parallel computational study, a radiative mixedness–reactedness flamelet combustion model is employed to simulate the experimental flame. A comprehensive radiation heat transfer model based on the discrete transfer method of solution of the radiative transport equation, together with the wide-band model for gas absorption coefficients, was used. The NO formation and emission was also calculated using a post-processing approach. Validation of the numerical results against the experimental data shows generally good quality combustion predictions in the near burner region. However, predictive difficulties are encountered in the downstream region, particularly for the oxygen concentration. The NO predictions reveal discrepancies when compared with measurements in the fuel rich part of the flame. The in-flame experimental data, with the aid of the predictions, has provided an enhanced understanding of combustion and NO characteristics of the lifted, non-premixed turbulent free jet flame.  相似文献   

3.
扩散过滤燃烧火焰特性   总被引:3,自引:1,他引:2       下载免费PDF全文
扩散过滤燃烧是新的燃烧技术,具有扩散燃烧和预混过滤燃烧的某些特性。通过二维双温模型,使用单步总包反应,数值研究氮气稀释的甲烷和氧气同轴同平板扩散过滤燃烧特性。模型中考虑热弥散和组分弥散效应。研究小球直径、气体混合物速度和甲烷质量分数对火焰高度和火焰形态的影响。结果表明,与预混过滤燃烧不同,气体和固体高温区存在于燃烧器的不同位置;而在高温区域之外,气体和多孔介质固体的温差很小。当填充床小球直径从6.66 mm减小到2.02 mm,火焰高度从0.048 m增大到0.12 m。增大混合物速度,甲烷的质量分数导致火焰变宽,火焰高度增大。数值模型的有效性得到了实验验证。  相似文献   

4.
Seong-Ku Kim  Jaehyun Ahn 《Fuel》2004,83(3):375-386
The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically investigated. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been applied to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants (NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of Eulerian Particle Flamelet Model approach. Computations are made for the various initial conditions of pressure, temperature and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high-pressure and high-temperature environments.  相似文献   

5.
In recovery combustion systems operating in the steel industry, energy is provided by boilers burning residual gases of blast furnace and coke oven. To help understand combustion of this particular type of fuels, a numerical study is conducted where the major chemical properties of steel gas flames are collected. The chemical composition of representative fuel and oxidizer steel gas is varied over a large range in calculations using detailed chemistry and complex transport properties. The chemical equilibrium compositions, premixed flame speeds and diffusion flame extinction strain rates are determined. The advantages and shortcomings of the use of vitiated air emerge, and its introduction into the boiler appears as an interesting alternative to reduce NOx emission. The detailed information obtained with laminar flame calculations is also introduced in flamelet turbulent combustion modeling. Reynolds Averaged Navier Stokes (RANS) simulations of a test case burner are performed and some comparisons between numerical predictions and experimental results are presented.  相似文献   

6.
旋转流中预混合火焰高速传播特性的研究为强化低热值燃气的稳定燃烧提供了新的开发思路.针对圆管内强制涡作用下的甲烷/空气预混合火焰,本工作采用数值模拟方法分析了混合气的进口速度和旋转角速度对预混合火焰稳定燃烧的影响.结果表明,在不同当量比条件下,使火焰稳定的混合气进口速度和旋转角速度之间存在线性关系,但随着旋转角速度的增大,火焰半径变小,燃烧效率减小.改变混合气进口速度的分布形式是提高燃烧效率的有效方法.研究结果为实际的稳燃燃烧器设计提供了理论指导.  相似文献   

7.
旋转流中预混合火焰高速传播特性的研究为强化低热值燃气的稳定燃烧提供了新的开发思路.针对圆管内强制涡作用下的甲烷/空气预混合火焰,本工作采用数值模拟方法分析了混合气的进口速度和旋转角速度对预混合火焰稳定燃烧的影响.结果表明,在不同当量比条件下,使火焰稳定的混合气进口速度和旋转角速度之间存在线性关系,但随着旋转角速度的增大,火焰半径变小,燃烧效率减小.改变混合气进口速度的分布形式是提高燃烧效率的有效方法.研究结果为实际的稳燃燃烧器设计提供了理论指导.  相似文献   

8.
An oxygen-diluted partially premixed/oxygen-enriched supplemental combustion (ODPP/OESC) counterflow flame is studied in this paper. Flame images are obtained through experiments and numerical simulations with the GRI-Mech 3.0 chemistry. The oxygen dilution effects are revealed by comparing the flame structures and emissions with those of a premixed flame and partially premixed flame (PPF) at the same equivalence ratio (?Σ = 0.95 and ? f = 1.4). The results show that both PPF and ODPP/OESC flames have distinct double flame structures; however, the location of the premixed combustion zone and the distance between premixed/nonpremixed combustion zone are significantly different for these two cases. For the ODPP/OESC flame, the temperature in the premixed combustion zone is lower and the premixed zone itself is located farther downstream from the fuel nozzle, which leads to reduction of NO and CO emissions, as compared to those of the PPF. Therefore, by adjusting the distribution of the oxygen concentration in the premixed and nonpremixed combustion zones, the ODPP/OESC can effectively balance the chemical reaction rate in the entire combustion zone and, consequently, reduce emissions.  相似文献   

9.
在前期关于Vortex-bursting旋流式预混燃烧器的燃烧效率及其进口混合气速度分布对燃烧效率的影响实验基础上,围绕燃烧器的点火特性,对旋流场中的点火位置和稳定火焰形成进行了数值分析.结果表明,不适当的点火位置会影响稳定火焰的形成,在相同的燃烧工况下,在流场中点火位置不同,火焰的发展出现不同的趋势.在靠近中心轴附近的低速区点火时,火焰能够稳定;在靠近管壁的高速区点火时,撤离点火源后,火焰吹熄.本结果对于强化预混合燃烧的稳定性具有理论和工程指导意义.  相似文献   

10.
This work investigates the effects of varying the pressure of the mixture reactants and the angle of impingement on the performance characteristics of a turbulent premixed jet flame impinging on a solid surface. These effects are important for the design of torches and flaming machines used for material and metal cutting and forming. The combustion and flow characteristics are modelled using a finite volume computational approach. Based on the simulation results, it is shown that, by increasing the pressure of the mixture reactants, the flame‐surface interaction mechanisms are modified. Changing the impingement angle increases the role of chemical kinetics and reduces maximum temperature values due to increased local flame extinction. The heat released and temperature predictions are compared to experimental data and the agreement is satisfactory.  相似文献   

11.
在前期关于Vortex-bursting旋流式预混燃烧器的燃烧效率及其进口混合气速度分布对燃烧效率的影响实验基础上,围绕燃烧器的点火特性,对旋流场中的点火位置和稳定火焰形成进行了数值分析. 结果表明,不适当的点火位置会影响稳定火焰的形成,在相同的燃烧工况下,在流场中点火位置不同,火焰的发展出现不同的趋势. 在靠近中心轴附近的低速区点火时,火焰能够稳定;在靠近管壁的高速区点火时,撤离点火源后,火焰吹熄. 本结果对于强化预混合燃烧的稳定性具有理论和工程指导意义.  相似文献   

12.
The primary goal of this study is to numerically model the transcritical mixing and reacting flow processes encountered in liquid propellant rocket engines. In order to realistically represent turbulence-chemistry interactions, detailed chemical kinetics, and non-ideal thermodynamic behaviors related to the liquid rocket combustion at supercritical pressures, the flamelet approach is coupled with real-fluid modeling based on the Soave-Redlich-Kwong (SRK) equation of state. To validate the real-fluid flamelet model, a gaseous hydrogen/cryogenic liquid oxygen coaxial jet flame at supercritical pressure has been chosen as a benchmark case. Numerical results are compared with experimental data obtained for the OH radical and the temperature distribution. It was found that weak flow recirculation is induced by the sudden expansion of cold core cryogenic oxygen associated with the pseudo-boiling process. This weak recirculation zone substantially influences the fundamental characteristics of liquid propellant reacting flows at supercritical pressures in terms of the spreading and the flame length. For the flame conditions employed in this study, the predicted contours of the OH radical are in good agreement with the experimental Abel transformed emission image in terms of the flame spreading angle and the flame location. Numerical results suggest that the real-fluid based flamelet model is capable of realistically predicting the overall characteristics of a turbulent non-premixed GH2/LOx flame at supercritical pressures.  相似文献   

13.
L.X. Zhou  L.Y. Hu  F. Wang 《Fuel》2008,87(13-14):3123-3131
The second-order moment (SOM) combustion model proposed by the present authors is compared with eddy-break-up (EBU) and presumed probability density function (PDF) combustion models in large-eddy simulation of jet diffusion combustion, swirling diffusion combustion and premixed combustion behind a bluff body. The statistical results for time-averaged and RMS fluctuation temperatures are validated by experimental results. It is seen that the SOM model can always give good statistical results in LES of both non-premixed and premixed combustion, whereas the EBU and presumed PDF models cannot always do. The instantaneous results indicate that organized large vortex and thin flame surface structures are observed in jet diffusion combustion and bluff-body stabilized premixed combustion, whereas no organized vortex and thin flame surface structures are observed in swirling diffusion combustion.  相似文献   

14.
自由堆积多孔介质内预混燃烧火焰传播   总被引:3,自引:2,他引:1       下载免费PDF全文
为了解多孔介质内预混燃烧火焰前沿的传播特性,对不同化学当量比(=0.7~1.0)的甲烷/空气预混气体在不同孔隙率(ε为0.37和0.42)的多孔介质内的火焰前沿传播特性进行了研究,多孔介质采用3 mm和6 mm直径的Al2O3小球在陶瓷管中堆积而成。结果表明,预混气体在多孔介质中能够形成低速燃烧的稳定燃烧波;其火焰传播速度随化学当量比增大而加快,最大的火焰传播速度为3.52×10-3 cm·s-1;多孔介质的结构对火焰前沿传播速度影响很大,即使在孔隙率差别不大的情况下,大球堆积而成的多孔介质比小球具有更高的火焰前沿传播速度。  相似文献   

15.
An experimental study has been performed in order to determine the effect of humidity on the flow field and the flame stability limit in turbulent non-premixed flame. Two-dimensional Particle Image Velocimetry (PIV) measurements were made to quantify the velocity field, with and without steam injected. The results indicate the addition of steam decreases the recirculation flow and reduces the distance between the forward and aft stagnation points. The detailed stabilization regimes show that the critical fuel-to-air velocity ratios of the central fuel penetration in the humid air case are 16% to 22% lower, and the partially quenching limits are at least 25% lower. The decreased penetration limit is due to a reduction in momentum of the humid air. An analysis of flamelet concepts reveals that increased chemical reaction time leads to lower partially quenching limits in the humid air combustion.  相似文献   

16.
17.
Conclusions In the pulsating combustion of premixed mixtures the flame may be blown back from the combustion chamber into the mixing zone at velocities exceeding the flash-back velocity by more than an order. The chief factor in the determination of flame blow-back is the amplitude of the pressure pulsation, whose value depends on the combustion chamber dimensions, flow velocity, the temperature and composition of the mixture, and the resistance of the combustion chamber outlet system.Fizika Goreniya i Vzryva, Vo. 4, No. 2, pp. 209–214, 1968  相似文献   

18.

The growth of nonspherical silica nanoparticles in a premixed flat flame has been simulated, including the effects of convection, diffusion, thermophoresis, chemical reactions, coagulation, and coalescence. Considering both radiation effect and multistep chemical reactions of methane/air including both oxidation and hydrolysis of SiCl 4 , combustion analysis in a premixed flat flame was done first to obtain temperature, concentration of gas species, and flow fields. The predicted flame temperatures were in good agreement with the previous experimental data. Two-dimensional aerosol dynamics in which both particle volume and surface area are independent variables was then analyzed to investigate the growth of nonspherical silica particles. Several different models of coalescence of silica particles were studied: viscous flow sintering, atomistic diffusion sintering, fast sintering, and hybrid sintering models. Since the residence time was short and temperatures were not high enough for perfect coalescence of silica particles in the present study, the resulting particles were partially sintered or open-structured aggregates. The variations of total volume/number concentration and diameter of average volume along the flame height were obtained and compared with experimental data. Bi-modal size distributions were obtained at some flame heights.  相似文献   

19.
In this study, we used the commercial CFD-code FLUENT to analyze numerically the hydrogen combustion and SiO2 particle formation in the premixed flame reactor. We considered SiCl4 as a precursor for SiO2 particle formation and calculated the profiles of fluid flow, temperature, species concentration and reaction rates for 2D premixed reactor model in FLUENT. Using the data for temperature and velocity extracted from FLUENT, we calculated the trajectories and temperature histories of SiO2 particles moving inside the premixed flame reactor and those particles starting near the centerline of reactor pass through the maximum temperature histories.  相似文献   

20.
From the very first experimental studies, based essentially on flame propagation velocity and flame emission measurements, successive improvements in analytical and numerical techniques have contributed to make the analysis of laminar flame structure a powerful tool for extending the knowledge on combustion chemistry, thermodynamics, and transport properties. This better knowledge is very beneficial to design efficient combustion devices with reduced pollutant emission. Overall net species production rates are derived from the experimental determination of the evolution of the gas stream velocity, temperature, and species concentrations in the direction normal to the flame front. For species involved in a limited number of reactions, rate constants can be calculated at the next step. The development, in the early 1980s, of numerical codes for simulating the structure of one-dimensional laminar premixed flames the flame structure data to be directly used for validating detailed reaction mechanisms. Species analyses are still performed with techniques based on local gas sampling by probes, despite flame perturbations, but flame structure analyses have been markedly enriched by the use of non-intrusive spectroscopic techniques. The former allow the analysis of a large variety of species, and they have proven to be very well adapted to the large number of intermediate species formed in rich flames or in flames fed by heavy fuel molecules. The molecular beam mass spectrometry technique has been recently improved by the use of new photoionization sources that allow identification of isomers and extend the knowledge on intermediate species involved in formation of benzene, polycyclic aromatic hydrocarbons, and soot in flames. Amongst various spectroscopic techniques applied to flame structure analyses, laser-induced fluorescence has been largely used to perform accurate quantitative measurements of intermediate radicals that play a key role in the prompt-NO mechanism. In this study, the contribution of flame structure studies to a better knowledge of formation mechanisms of benzene and NO x is briefly reviewed. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 22–42, July–August, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号