首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai S  Lao K  Lau C  Lu J 《Analytical chemistry》2011,83(24):9702-9708
Monitoring the levels of potentially toxic metal ions such as Hg(2+) in aquatic ecosystems is important because this ion can have severe effects on human health and the environment. Thus, a novel chemiluminescence (CL) sensor is developed for the highly selective and ultrasensitive detection of Hg(2+) ions in aqueous solution, based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and subsequent formation of gold nanoparticles (Au NPs) in a HAuCl(4)/NH(2)OH reaction. The thus-formed Au NPs trigger the reaction between luminol and AgNO(3), producing CL emission. This novel CL technique has several advantages including high sensitivity (0.01 ppb) and selectivity over a spectrum of interfering metal ions. In view of these advantages, as well as the cost-effective, minimized working steps and portable features of the CL techniques, we expect that this CL sensor will be a promising candidate for the field detection of toxic Hg(2+) ions in environment, water, and food samples.  相似文献   

2.
Detection of mercury at concentration levels down to parts-per-billion is a problem of fundamental and practical interest due to the high toxicity of the metal and its role in environmental pollution. The extensive research in this area has been focused primarily on specific sensing of mercuric (Hg(2+)) ion. As mercury exists in the oxidation states, +2, +1 and 0 all of which are highly toxic, a universal sensor covering all the three while ensuring high sensitivity, selectivity, and linearity of response, and facilitating in situ as well as ex situ deployment, would be very valuable. Silver nanoparticle-embedded poly(vinyl alcohol) (Ag-PVA) thin film fabricated through a facile protocol is shown to be a fast, efficient and selective sensor for Hg(2+), Hg(2)(2+) and Hg in aqueous medium with a detection limit of 1 ppb. The sensor response is linear in the 10 ppb to 1 ppm concentration regime. A unique characteristic of the thin film based sensor is the blue shift occurring concomitantly with the decrease in the surface plasmon resonance absorption upon interaction with mercury, making the sensing highly selective. Unlike the majority of known sensors that work only in situ, the thin film sensor can be used ex situ as well. Examination of the thin film using microscopy and spectroscopy through the sensing process provides detailed insight into the sensing event.  相似文献   

3.
A self-assembled biomolecule was used to create a highly sensitive sensor surface for detecting toxic chemical species (polychlorinated biphenyls, PCBs). We fabricated the nanostructured sensor surface via the self-assembly of cytochrome c on a Au thin film. Surface plasmon resonance (SPR), an evanescent wave technique possessing maximum sensitivity on the surface and characterized by an exponential decay of sensitivity with distance from the surface, was utilized as the principle for signal transduction. When this sensor surface was used for the detection of PCB, even trace amounts of PCB (from 0.1 ppb to 8.0 ppb) in an aqueous solution were readily detectable.  相似文献   

4.
Li M  Wang Q  Shi X  Hornak LA  Wu N 《Analytical chemistry》2011,83(18):7061-7065
An ultrasensitive fluorescent sensor based on the quantum dot/DNA/gold nanoparticle ensemble has been developed for detection of mercury(II). DNA hybridization occurs when Hg(II) ions are present in the aqueous solution containing the DNA-conjugated quantum dots (QDs) and Au nanoparticles. As a result, the QDs and the Au nanoparticles are brought into the close proximity, which enables the nanometal surface energy transfer (NSET) from the QDs to the Au nanoparticles, quenching the fluorescence emission of the QDs. This nanosensor exhibits a limit of detection of 0.4 and 1.2 ppb toward Hg(II) in the buffer solution and in the river water, respectively. The sensor also shows high selectivity toward the Hg(II) ions.  相似文献   

5.
A microcantilever array sensor with cantilevers differentially functionalized with self-assembled monolayers (SAMs) of thiolated ligands is prepared by simultaneous capillary coating. This array is described for the detection of metal ions including Li+, Cs+, Cu2+, Co2+, Fe3+, and Al3+. Binding of the charged metal cations to the surface of the microcantilever sensors produces surface stress that causes bending of the cantilevers that is detected as tip deflection using an array of vertical cavity surface emitting lasers and a position-sensitive detector. Optimization studies of the nanostructured dealloyed surface were performed for SAMs based on their response to Cu2+ cations. Sensor performance experiments demonstrate good sensitivity toward metal ions, with limits of detection as low as 10(-8) molar. A multiplex capillary coating method for cantilever array creation is demonstrated and validated based on surface-enhanced Raman spectra obtained from adjacent cantilevers that were functionalized with different thiolated SAMs. The cantilever array coated with a range of thiolated ligands was exposed to the group of metal ions. The response characteristics of each metal ion show substantial diversity, varying not only in response magnitude, but response kinetics. A pattern recognition algorithm based on a combination of independent component analysis and support vector machines was able to validate that the sensor array response profiles produced enough information content that metal ions could be reliably classified with probabilities as high as 89%.  相似文献   

6.
An automatic microgravimetric screening system based on piezoelectric detection and the use of acidic stannous chloride as reductant was developed for the fast detection and determination of total mercury in water. Reduced mercury is detected as an amalgam by using a gold-coated piezoelectric crystal, the sensor subsequently being regenerated by passing it through a peroxydisulfate solution. The gold-coated piezoelectric crystal is a highly efficient retention unit for the main soluble mercury species (inorganic, complexed, and organometallic) previously reduced to elemental mercury and is free of interferences from other metal ions. This detector exhibits good sensitivity: it allows the determination of mercury at sub-parts-per-billion concentration levels (0.30-1.00 microg/L). The precision, expressed as relative standard deviation, was +/- 2.7% (n = 11; P = 0.05) at 0.5 microg/L total mercury. The proposed method was successfully used as a rapid screening method for mercury monitoring in natural waters.  相似文献   

7.
For sensors detecting immobilized biomarkers, the interface between the surface and the fluid medium plays an important role in determining the levels of signal and noise in the electrochemical detection process. When protein is directly immobilized on the metal electrode, denaturation of the protein by surface–protein interaction results in low activity and low signal level. A conducting polymer‐based interface can prevent the protein conformation change and alleviate this problem. A DNA dendrimer is introduced into the interfacial film on the sensor surface to further improve the sensor performance. DNA dendrimer is a nanoscale dendrite constructed of short DNA sequences, which can be easily incorporated into the abiotic conducting polymer matrix and is biocompatible with most biological species. In this work, DNA dendrimer and polypyrrole (DDPpy) form the bio/abiotic interface on electrochemical sensors. Detection of two salivary protein markers (IL‐8 and IL‐1β) and one mRNA salivary marker (IL‐8) is used to demonstrate the efficiency of the DDPpy sensor. A limit of detection (LOD) of protein of 100–200 fg mL?1 is achieved, which is three orders of magnitude better than that without the DNA dendrimer interface. An LOD of 10 aM is established for IL‐8 mRNA. The typical sample volume used in the detection is 4 µL, thus the LOD reaches only 25 target molecules (40 yoctomole).  相似文献   

8.
Chen K  Lu G  Chang J  Mao S  Yu K  Cui S  Chen J 《Analytical chemistry》2012,84(9):4057-4062
Fast and accurate detection of aqueous contaminants is of significant importance as these contaminants raise serious risks for human health and the environment. Mercury and its compounds are highly toxic and can cause various illnesses; however, current mercury detectors suffer from several disadvantages, such as slow response, high cost, and lack of portability. Here, we report field-effect transistor (FET) sensors based on thermally reduced graphene oxide (rGO) with thioglycolic acid (TGA) functionalized gold nanoparticles (Au NPs) (or rGO/TGA-AuNP hybrid structures) for detecting mercury(II) ions in aqueous solutions. The lowest mercury(II) ion concentration detected by the sensor is 2.5 × 10(-8) M. The drain current shows rapid response within less than 10 s after the solution containing Hg(2+) ions was added to the active area of the rGO/TGA-AuNP hybrid sensors. Our work suggests that rGO/TGA-AuNP hybrid structures are promising for low-cost, portable, real-time, heavy metal ion detectors.  相似文献   

9.
A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).  相似文献   

10.
This study reports an insightful portable vector network analyser (VNA)‐based measurement technique for quick and selective detection of Hg2+ ions in nanomolar (nM) range using homocysteine (HCys)‐functionalised quartz‐crystal‐microbalance (QCM) with cross‐linked‐pyridinedicarboxylic acid (PDCA). The excessive exposure to mercury can cause damage to many human organs, such as the brain, lungs, stomach, and kidneys, etc. Hence, the authors have proposed a portable experimental platform capable of achieving the detection in 20–30 min with a limit of detection (LOD) 0.1 ppb (0.498 nM) and a better dynamic range (0.498 nM–6.74 mM), which perfectly describes its excellent performance over other reported techniques. The detection time for various laboratory‐based techniques is generally 12–24 h. The proposed method used the benefits of thin‐film, nanoparticles (NPs), and QCM‐based technology to overcome the limitation of NPs‐based technique and have LOD of 0.1 ppb (0.1 μg/l) for selective Hg2+ ions detection which is many times less than the World Health Organization limit of 6 μg/l. The main advantage of the proposed QCM‐based platform is its portability, excellent repeatability, millilitre sample volume requirement, and easy process flow, which makes it suitable as an early warning system for selective detection of mercury ions without any costly measuring instruments.Inspec keywords: quartz crystal microbalances, chemical sensors, microsensors, mercury (metal), nanosensors, nanoparticles, network analysers, chemical variables measurement, portable instruments, polymers, thin film sensorsOther keywords: mercury ion detection, homocysteine functionalised quartz crystal microbalance, cross‐linked pyridinedicarboxylic acid, mental retardation, Hunter–Russell syndrome, portable experimental platform, LOD, laboratory‐based techniques, NP‐based technique, QCM‐based microelectromechanical system technology, homocysteine‐functionalised quartz crystal microbalance, portable vector network analyser‐based measurement technique, World Health Organization, WHO, limit of detection, PDCA, HCys, nanoparticles, time 20.0 min to 30.0 min, time 12.0 hour to 24.0 hour, Hg  相似文献   

11.
Wang S  Forzani ES  Tao N 《Analytical chemistry》2007,79(12):4427-4432
High-resolution differential surface plasmon resonance (SPR) with anodic stripping voltammetry (ASV) capability has been demonstrated for detecting heavy metal ions in water. Metal ions are electroplated onto the gold SPR sensing surface and are quantitatively detected by stripping voltammetry. Both the SPR angular shift and electrochemical current signal are recorded to identify the type and amount of the metal ions in water. The performance of the combined approach is further enhanced by a differential detection approach. The gold sensor surface is divided into a reference and a sensing area, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. Our system demonstrated quantitative detection of copper, lead, and mercury ions in water from part-per-million to sub-part-per-billion levels with good linearity.  相似文献   

12.
双酚A(BPA)被广泛应用于食品包装材料中,它会引起人体内分泌失调,并导致免疫和生殖系统异常,因此对生活用水中BPA的检测十分重要。本文采用一步水热法合成纳米Fe2O3-还原氧化石墨烯(Fe2O3-rGO)复合材料并进行表征,基于Fe2O3-rGO复合材料构建电化学传感器Fe2O3-rGO/玻碳电极,用于检测水样中的BPA。通过FTIR、XRD和SEM分析,表明纳米Fe2O3粒子成功附着到rGO上;采用微分脉冲伏安法(DPV)进行BPA的电化学检测,结果显示BPA在0.1~100 μmol/L范围内呈现良好的线性关系,检出限为0.033 μmol/L(信噪比为3)。同时,Fe2O3-rGO/玻碳电极电化学传感器对电活性物质和常见金属离子具有良好的抗干扰能力,且实样检测结果理想。   相似文献   

13.
In this study, the authors demonstrate the fabrication, calibration, and testing of a piezoresistive microcantilever‐based sensor for biomedical microelectromechanical system (BioMEMS) application. To use any sensor in BioMEMS application requires surface modification to capture the targeted biomolecules. The surface alteration comprises self‐assembled monolayer (SAM) formation on gold (Au)/chromium (Cr) thin films. So, the Au/Cr coating is essential for most of the BioMEMS applications. The fabricated sensor uses the piezoresistive technique to capture the targeted biomolecules with the SAM/Au/Cr layer on top of the silicon dioxide layer. The stiffness (k) of the cantilever‐based biosensor is a crucial design parameter for the low‐pressure range and also influence the sensitivity of the microelectromechanical system‐based sensor. Based on the calibration data, the average stiffness of the fabricated microcantilever with and without Au/Cr thin film is 141.39 and 70.53 mN/m, respectively, which is well below the maximum preferred range of stiffness for BioMEMS applications. The fabricated sensor is ultra‐sensitive and selective towards Hg2+ ions in the presence of other heavy metal ions (HMIs) and good enough to achieve a lower limit of detection 0.75 ng/ml (3.73 pM/ml).Inspec keywords: molecular biophysics, bioMEMS, chemical sensors, microfabrication, cantilevers, microsensors, self‐assembly, monolayers, gold, piezoresistive devices, calibration, chromium, thin film sensors, mercury (metal), silicon compoundsOther keywords: microcantilever‐based piezoresistive sensor, BioMEMS application, biomedical microelectromechanical system application, targeted biomolecules, piezoresistive technique, cantilever‐based biosensor, microelectromechanical system‐based sensor, microcantilever fabrication, calibration, surface modification, surface alteration, self‐assembled monolayer, SAM, coating, thin films, HMI, heavy metal ion, Au‐Cr‐SiO2 , Hg  相似文献   

14.
Modified electrodes with metal or metal oxides nanoparticles are particularly appealing to improve sensor performances and fabricate miniaturized devices, as required also in glucose detection. A Pt electrode modified by drop casting of a novel nanostructured film based on silver nanoparticles (Ag-NPs) capped in a commercial nontoxic polyvinyl alcohol (PVA) matrix is proposed here as a valid alternative to classical glucose (bio)sensors. The extensive electrochemical and spectroscopic characterization by X-ray Photoelectron Spectroscopy (XPS) of this advanced nanomaterial is presented to study its response to glucose and to investigate the chemical nature of deposited Ag.  相似文献   

15.
In this work, an antimony film electrode (SbFE) is reported for the first time as a possible alternative for electrochemical stripping analysis of trace heavy metals. The SbFE was prepared in situ on a glassy carbon substrate electrode and employed in combination with either anodic stripping voltammetry or stripping chronopotentiometry in nondeaerated solutions of 0.01 M hydrochloric acid (pH 2). Several key operational parameters influencing the electroanalytical response of SbFE were examined and optimized, such as deposition potential, deposition time, and composition of the measurement solution. The SbFE exhibited well-defined and separated stripping signals for both model metal ions, Cd(II) and Pb(II), surrounded with low background contribution and a relatively large negative potential range. The electrode revealed good linear behavior in the examined concentration range from 20 to 140 microg L-1 for both test metal ions, with a limit of detection (3sigma) of 0.7 microg L-1 for Cd(II) and 0.9 microg L-1 for Pb(II) obtained after a 120 s deposition step, and good reproducibility, with a relative standard deviation (RSD) of +/-3.6% for Cd(II) and +/-6.2% for Pb(II) (60 microg L-1, n = 12). When comparing the SbFE with the commonly used mercury film electrode and recently introduced bismuth film electrode, the newly proposed electrode offers a remarkable performance in more acidic solutions (pH < or = 2), which can be advantageous in electrochemical analysis of trace heavy metals, hence contributing to the wider applicability of electrochemical stripping techniques in connection with "mercury-free" electrodes.  相似文献   

16.
Using selective reaction chemistry, our present research has developed an online, real-time sensor capable of monitoring toxic cyanide at both drinking water standard and environmental regulatory concentrations. Through the use of a flow cell, aqueous samples containing cyanide are reacted with a gold electrode of a piezoelectric crystal to indirectly sense cyanide concentration by the dissolution of metallic gold. The quartz crystal is an AT-cut wafer sandwiched between two neoprene O-rings within the liquid flow cell. The presence of cyanide in solution results in the selective formation of a soluble dicyano-gold complex according to the Elsner reaction: 4Au + 8CN- + 2H2O + O2 <=> 4Au(CN)2- + 4OH-. The resulting loss of gold from the electrode is detected by the piezoelectric crystal as a resonant frequency change. Since free cyanide is a weak acid (pKa = 9.3), available protons compete for cyanide ligands. Therefore, increased sample pH provides higher sensitivity. The detection limits at pH 12 are 16.1 and 2.7 ppb for analysis times of 10 min and 1 h, respectively. The incorporation of the flow cell improves both analyte sensitivity and instrument precision, with an average signal intensity drift of only 5% over a 2-h analysis. The calibrations show excellent linearity over a variety of cyanide concentrations ranging from low ppb to hundreds of ppm. This detection method offers the advantage of selectively detecting cyanides posing a biohazard while avoiding detection of stable metal cyanides. This aspect of the system is based on competitive exchange of available metals and gold with cyanide ligands. Stable metal cyanide complexes possess a higher formation constant than cyanoaurate. This detection system has been configured into a flow injection analysis array for simple adaptation to automation. Anions commonly found in natural waters have been examined for interference effects. Additionally, the sensor is free from interference by aqueous cyanide analogues including thiocyanate. The developed detection system provides rapid cyanide determinations with little sample preparation or instrument supervision.  相似文献   

17.
Efficient chemical warfare agents (CWAs) detection is required to protect people from the CWAs in war and terrorism. In this work, a Pd-doped SnO2 nanoparticles-based gas sensor was developed to detect a nerve agent simulant named methyl salicylate. The sensing measurements of methyl salicylate under different Pd doping amounts found that the 0.5 at.% Pd-doped SnO2 exhibited a significant improvement in the detection of methyl salicylate at the ppb (1 ppb = 10−9) level, and the response value to 160 ppb methyl salicylate is 0.72 at 250 °C. Compared with the pure SnO2, the response value is increased by 4.5 times, which could be attributed to the influence of the noble metal Pd on the oxygen state and its catalytic effect. In addition, the 0.5 at.% Pd-doped SnO2 sensor still has an obvious response to 16 ppb methyl salicylate with a response value of 0.13, indicating the lower detection limit of the sensor.  相似文献   

18.
Wen D  Deng L  Guo S  Dong S 《Analytical chemistry》2011,83(10):3968-3972
A self-powered electrochemical sensor has been facilely designed for sensitive detection of Hg(2+) based on the inhibition of biocatalysis process of enzymatic biofuel cell (BFC) for the first time. The as-prepared one-compartment BFC, which was consisted of alcohol dehydrogenase supported on single-walled carbon nanohorns-based mediator system as the anode and bilirubin oxidase as the cathodic biocatalyst, generated an open circuit potential (V(oc)) of 636 mV and a maximum power density of 137 μW cm(-2). It was interestingly found that the presence of Hg(2+) would affect the performance of the constructed BFC (e.g., V(oc)). Taking advantage of the inhibitive effect of Hg(2+), a novel self-powered Hg(2+) sensor has been developed, which showed a linear range of 1-500 nM (R(2) = 0.999) with a detection limit of 1 nM at room temperature. In addition, this BFC-type sensor exhibited good selectivity for Hg(2+) against other common environmental metal ions, and the feasibility of the method for Hg(2+) detection in actual water samples (i.e., tap, ground, and lake water) was demonstrated with satisfactory results.  相似文献   

19.
20.
Shen L  Chen Z  Li Y  He S  Xie S  Xu X  Liang Z  Meng X  Li Q  Zhu Z  Li M  Le XC  Shao Y 《Analytical chemistry》2008,80(16):6323-6328
An electrochemical DNAzyme sensor for sensitive and selective detection of lead ion (Pb(2+)) has been developed, taking advantage of catalytic reactions of a DNAzyme upon its binding to Pb(2+) and the use of DNA-Au bio-bar codes to achieve signal enhancement. A specific DNAzyme for Pb(2+) is immobilized onto an Au electrode surface via a thiol-Au interaction. The DNAzyme hybridizes to a specially designed complementary substrate strand that has an overhang, which in turn hybridizes to the DNA-Au bio-bar code (short oligonucleotides attached to 13 nm gold nanoparticles). A redox mediator, Ru(NH3)6(3+), which can bind to the anionic phosphate of DNA through electrostatic interactions, serves as the electrochemical signal transducer. Upon binding of Pb(2+) to the DNAzyme, the DNAzyme catalyzes the hydrolytic cleavage of the substrate, resulting in the removal of the substrate strand along with the DNA bio-bar code and the bound Ru(NH3)6(3+) from the Au electrode surface. The release of Ru(NH3)6(3+) results in lower electrochemical signal of Ru(NH3)6(3+) confined on the electrode surface. Differential pulse voltammetry (DPV) signals of Ru(NH3)6(3+) provides quantitative measures of the concentrations of Pb(2+), with a linear calibration ranging from 5 nM to 0.1 microM. Because each nanoparticle carries a large number of DNA strands that bind to the signal transducer molecule Ru(NH3)6(3+), the use of DNA-Au bio-bar codes enhances the detection sensitivity by five times, enabling the detection of Pb(2+) at a very low level (1 nM). The DPV signal response of the DNAzyme sensor is negligible for other divalent metal ions, indicating that the sensor is highly selective for Pb(2+). Although this DNAzyme sensor is demonstrated for the detection of Pb(2+), it has the potential to serve as a general platform for design sensors for other small molecules and heavy metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号