首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Raj...  相似文献   

2.
Microbially induced calcite precipitation (MICP) is a recently developed technique for microbiological ground improvement that has been applied for mitigating various geotechnical challenges. However, the major challenges, such as calcite precipitation uniformity, presence of different bacteria, cementation solution optimization for cost reduction, and implementation under non-sterile and uncontrolled field environment are still not fully explored and require detailed investigation before field application. This study aims to address these challenges of MICP to improve the geotechnical properties of sandy soils. Several series of experiments were conducted using poorly graded Narmada River (India) sand, which were subjected to various biotreatment schemes and tested for unconfined compressive strength (UCS), split tensile strength (STS), ultrasonic pulse velocity (UPV), hydraulic conductivity (after 6 d, 12 d, and 18 d of treatment), and calcite content. The microstructure of sand was examined through a scanning electron microscope (SEM). Initially, the sand was individually augmented with two non-pathogenic bacterial strains, i.e. Sporosarcina (S.) pasteurii and Bacillus (B.) sphaericus. The stopped-flow injection method was adopted to provide cementation solutions at three different durations (treatment cycle) of 12 h, 24 h, and 48 h and three different pore volumes (PVs) of 1, 0.75, and 0.5. The pore volume here refers to the porosity which is expressed as a ratio, i.e. a porosity of 50% was used as 0.5. The results showed rock-like behaviors of biocemented sand with the UCS, STS, and UPV enhancement up to 2333 kPa, 437 kPa, and 2670 m/s, respectively. The hydraulic conductivity reduction of 96.6% was achieved by 12% of calcite formation after 18 d of treatment using Sporosarcina pasteurii, 12-h treatment cycle, and one pore volume of cementation media in each cycle. Overall, a 24-h treatment cycle and 0.5-pore volume cementation solution were found to be the optimal treatment which was effective and economical to achieve heavily cemented, rock-type biocemented sand using both bacteria.  相似文献   

3.
《Soils and Foundations》2022,62(6):101238
Lime, cement, and bitumen are well-known traditional binders for improving the bearing capacity of soils. However, the production of these binders results in a massive impact on the environment due to the emission of greenhouse gases, such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). In this study, a novel cement–polyvinyl alcohol (PVA) mixture is proposed to fabricate strong composite geomaterials. The advantage of the proposed materials is that they can increase the unconfined compressive strength (UCS) and, combined with cement hydration, producing PVA glue, can be used to fill up the soil pores. Laboratory tests indicate a threefold increase in UCS with the cement–PVA-combined mixture compared to a cement-stabilized one. The results of scanning electron microscope (SEM) observations suggest that the cement–PVA composite can ameliorate the pore structure that is more solid than the cement-stabilized one. Moreover, by curing at 80 °C, the strength of the cement–PVA stabilized soil decreases by threefold, plateauing at the same strength as the non-PVA stabilized soil. In addition, the results of cyclic thermal exposure tests suggest that, with the increase in the number of heating/cooling cycles, the UCS gradually decreases compared to the initial one. However, the loss of UCS is less than 25 % under the three cycles of exposure. Thus, these composites have the potential to promote urban renewal projects in an ecofriendly manner.  相似文献   

4.
《Soils and Foundations》2022,62(6):101216
A large amount of river silt is continuously dredged and usually dumped in landfills or oceans, resulting in land occupation and environmental pollution. Traditionally, cement-based materials are used to cement dredged river silt as building materials, which not only increases carbon dioxide emissions but also uses very little dredged silt. In order to realize the resource utilization of dredged river silt, microbial induced calcium carbonate precipitation (MICP) technology, which has the advantages of lower energy consumption, less environmental pollution and lower carbon emissions, is adopted to solidify the dredged river silt as roadbed materials in this paper. The unconfined compressive strength (UCS) test, calcium carbonate (CaCO3) content test and microstructure test are carried out to analyze the mechanical properties of the solidified dredged river silt. The test results show that the MICP mixing method can be employed to solidify loose dredged river silt into high-strength construction materials. The concentration of the cementation solution has a significant effect on the solidification effect, and the most reasonable concentration of the cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 6.75 MPa with a relatively uniform CaCO3 content of 27.8 %. The main crystal form of CaCO3 is calcite, which can fill the pores and make the river silt particles cement as a whole, which is the main reason for the improvement of mechanical properties of dredged river silt.  相似文献   

5.
《Soils and Foundations》2022,62(6):101246
This study analyzed the effect of different treatment methods in enzyme-induced carbonate precipitation (EICP) on the mechanical properties of soil. Soybean crude urease was used to catalyze the precipitation of calcium carbonate (CaCO3). A multiple-phase method was proposed and further compared with commonly practiced EICP treatment methods (including the one-phase method, two-phase method, and premix-and-compact method) from the aspects of chemical conversion efficiency, CaCO3 precipitation distribution, permeability, and unconfined compressive strength. Based on the findings, the characteristics of each method were further discussed and summarized. Although the enzymatic CaCO3 precipitation generated from all the treatment methods could potentiate the soil strength to a great or less degree, using the proposed multiple-phase method could bring about a high chemical conversion efficiency, uniform distribution of CaCO3 as well as preferable permeability retention. In addition, the multiple-phase method could significantly improve the efficiency of urease usage.  相似文献   

6.
This paper presents experimental investigations on the behavior of geogrid–reinforced sand featuring reinforcement anchorage which simulates the reinforcement connected to the wall facings in numerous in-situ situations. A series of large plane strain compression tests (the specimen 56 cm high × 56 cm wide × 45 cm long) was conducted. Standard Ottawa sand and 4 types of PET geogrids exhibiting 5% stiffness in the range of 750–1700 kN/m were used in this study. The specimens were tested by varying the relative density of sand, confining pressures, geogrid types, and reinforcement-anchorage conditions. Experimental results indicate that relative to unreinforced specimens, both anchored and non-anchored geogrid reinforcements can enhance the peak shear strength and suppress the volumetric dilation of reinforced soil. The studies on anchorage revealed that anchoring the reinforcement can restrain the lateral expansion of reinforced specimens, resulting in a substantial increase in shear strength and a reduction in volumetric dilation. The strength ratios of non-anchored specimens appeared to be insensitive to the reinforcement stiffness, whereas the strength ratios of the anchored specimens increased markedly with increases in soil density, reinforcement stiffness, and system deformation (i.e., axial stain). Geogrid anchorage contributed a large percentage of the total shear-strength improvement, nearly 3-times more than the contribution of the soil–geogrid interaction in non-anchored specimens. Lastly, an analytical model was developed based on the concept that additional confinement is induced by reinforcement anchorage, and the predicted shear strength of the anchored soil was verified based on the experimental data.  相似文献   

7.
The paper presents results of an investigation conducted to study the impact resistance of steel fibre reinforced concrete containing fibres of mixed aspect ratio. An experimental investigation was planned in which 108 plain concrete and SFRC beam specimens of size 100 × 100 × 500 mm were tested under impact loading. The specimen incorporated three different volume fractions i.e. 1.0%, 1.5% and 2.0% of corrugated steel fibres. Each volume fraction incorporated mixed steel fibres of size 0.6 × 2.0 × 25 mm and 0.6 × 2.0 × 50 mm in different proportions. The drop weight type impact tests were conducted on the test specimens and the number of blows of the hammer required to induce first visible crack and ultimate failure of the specimen were recorded. The results are presented in terms of number of blows required as well as impact energy at first crack and ultimate failure. It has been observed that concrete containing 100% long fibres at 2.0% volume fraction gave the best performance under impact loading.  相似文献   

8.
This study addresses a soil improvement technique using plant-derived urease-induced calcium carbonate (CC) precipitation (PDUICCP) as an alternative to microbially induced carbonate precipitation (MICP). A crude extract of crushed watermelon (Citrullus lanatus) seeds was used as the urease source along with calcium chloride (CaCl2) and urea (CO (NH2)2) for CC precipitation. Test specimens (φ?=?2.3?cm, h?=?7.1?cm) made from commercially available Mikawa sand (mean diameter, D50?=?870?µm) were cemented, and estimated unconfined compressive strength (UCS) of several kPa to MPa was obtained by changing the concentration of CaCl2- urea, urease activity, curing time, and temperature. The increase of curing time and that of the CaCl2-urea concentration from 0.3?M to 0.7?M caused an increase in estimated UCS value. The average estimated UCS obtained after 14?days’ curing time for 0.7?M CaCl2-urea and 3.912 U/mL urease was around 3.0?MPa and for 0.3 and 0.5?M CaCl2-urea and 0.877 U/mL urease, it was around 1.5–2.0?MPa at 25?°C. By changing each of the abovementioned parameters, it may be possible to apply this method for strength improvement of loose sand, to mitigate the liquefaction, protection and restoration of limestone monuments and statuaries, and artificial soft rock formations. Crude urease from crushed watermelon seeds has the potential to replace commercially available urease for carbonate precipitation and for use as a low environmental impact type soil improvement method.  相似文献   

9.
To improve the unconfined compressive strength (UCS) of a novel chemical grout composed of a calcium phosphate compound (CPC-Chem), we performed UCS tests and scanning electron microscopy (SEM) observations on sand test pieces cemented with CPC-Chem and four kinds of powders (tricalcium phosphate, TCP; magnesium phosphate, MgP; calcium carbonate, CC and magnesium carbonate, MgC) as seed crystals. The UCS of the CPC-Chem test pieces cemented with TCP and CC was significantly greater than that of the test pieces with no added powders. The UCS of the test pieces with TCP and CC additives exceeded the targeted value of 100 kPa and increased to a maximum of 261.4 kPa and 209.7 kPa for the test pieces with TCP and CC additives, respectively. Furthermore, the UCS of test pieces with 1 wt% or 5 wt% TCP and 1 wt% CC additives was maintained at a level exceeding 200 kPa for 168 days. SEM observations revealed net-like and three-dimensional structures in segments of test pieces cemented with 1 wt% or 5 wt% TCP and 1 wt% CC in CPC-Chem, which could have been the reason of the long-term stability of UCS (over 200 kPa for 168 days) observed in this study. These results suggest that the addition of TCP and CC significantly enhances the ground improvement afforded by CPC-Chem.  相似文献   

10.
The objective of the research was to examine the creep behavior of masonry walls strengthened with FRP composites compared to that of conventional reinforcement. Eight full-scale (40 in wide by 96 in tall [1.02 m × 2.44 m]) unreinforced concrete masonry walls were constructed for testing long-term deflections out-of-plane. The walls were strengthened with externally bonded CFRP or GFRP composites. Two additional walls were constructed with mild steel reinforcement grouted in the center cell of the specimens. Long-term deflections due to creep in FRP reinforced walls were shown to be ≈22–56% higher than those of steel reinforced walls.  相似文献   

11.
This paper uses a case study from Brunswick Mine in Canada to determine a representative elementary volume (REV) of a jointed rock mass in the vicinity of important underground infrastructure. The equivalent geometrical and mechanical property REV sizes were determined based on fracture systems modeling and numerical experiments on a synthetic rock mass. Structural data collected in massive sulphides were used to generate a large fracture system model (FSM), 40 m×40 m×40 m. This FSM was validated and subsequently sampled to procure 40 cubic specimens with a height to width ratio of 2 based on sample width from 0.05 to 10 m. The specimens were introduced into a 3D particle flow code (PFC3D) model to create synthetic rock mass (SRM) samples. The geometrical REV of the rock mass was determined based on the number of fractures in each sampled volume (P30) and the volumetric fracture intensity (P32) of the samples. The mechanical REV was estimated based on the uniaxial compressive strength (UCS) and elastic modulus (E) of the synthetic rock mass samples.The REV size of the rock mass was determined based on a series of statistical tests. The T-test was used to assess whether the means of the samples were statistically different from each other and the F-test to compare the calculated variance. Finally, the coefficient of variation, for the synthetic rock mass geometrical and mechanical properties, was plotted against sample size. For this particular site the estimated geometrical REV size of the rock mass was 3.5 m×3.5 m×7 m, while the mechanical property REV size was 7 m×7 m×14 m. Consequently, for engineering purposes the largest volume (7 m×7 m×14 m) can be considered as the REV size for this rock mass.  相似文献   

12.
Permeability is one of the most important parameters to quantify the durability of high-performance concrete. Permeability is closely related with the spalling phenomenon in concrete at elevated temperature. This parameter is commonly measured on non-thermally damaged specimens. This paper presents the results of an experimental investigation carried out to study the effect of elevated temperature on the permeability of high-performance concrete. For this purpose, three types of concrete mixtures were prepared: (i) control high-performance concrete; (ii) high-performance concrete incorporating polypropylene fibres; and (iii) high-performance concrete made with lightweight aggregates. A heating–cooling cycle was applied on 160 × 320 mm, 110 × 220 mm, and 150 × 300 mm cylindrical specimens. The maximum test temperature was kept as either 200 or 600 °C. After the thermal treatment, 65 mm thick slices were cut from each cylinder and dried prior to being subjected to permeability test. Results of thermal gradients in the concrete specimens during the heating–cooling cycles, compressive strength, and splitting tensile strength of concrete mixtures are also presented here. A relationship between the thermal damage indicators and permeability is presented.  相似文献   

13.
The stress state in a rock mass is complex. Stress redistribution around underground excavation may lead to various failure modes, including compressive-shear, tensile-shear, and tensile failures. The ability to perform laboratory tests with these complex stress states is significant for establishing new strength criteria. The present paper introduces a new rock testing system with “tensile-compressive-shear”loading functions. The device includes bi-directional and double-range hydraulic cylinde...  相似文献   

14.

This paper investigates the volumetric, microstructural, and shear behaviours of an expansive soil during multiple drying-wetting (DW), freeze–thaw (FT), and drying-wetting-freeze–thaw (DWFT) cycles. Specimens compacted at natural moisture content and dry density were subjected to 1, 4, 6, and 10 DW, FT, or DWFT cycles. Volumetric changes were recorded during the treatments and mercury intrusion porosimetry, and scanning electron microscope tests were conducted to observe the soil’s microstructure before and after treatments. As compacted specimens and specimens after different numbers of DW, FT, and DWFT cycles were saturated and sheared under consolidated undrained condition to determine their undrained elastic modulus (Eu), shear strength (qu), total cohesion (c), and friction angle (?). Experimental results show that DW, FT, and DWFT cycles mainly influence the soil’s macropores with diameters between 5 and 250 μm. Macropores collapse during DW cycles, which lead to collapse in the soil’s global volume. Cracks develop during FT cycles and result in slight swelling in the soil’s volume. These two effects offset during DWFT cycles and cause an intermediate volumetric behaviour. The Eu, qu, c, and ? decline during DW, FT, and DWFT cycles, and the reduction was most significant during DWFT cycles. They reach an equilibrium after approximately 6 cycles of treatment. A simple normalized model was developed to describe the stress–strain curves considering the influence of DW, FT, and DWFT cycles. Good agreements were achieved between the model predictions and measurements for all stress–strain curves obtained in this study.

  相似文献   

15.
The experiments were performed for assessing the influence of cyclic thermal loading on the shear strength of reinforced concrete (RC) beam specimens. One hundred eleven RC beams of 100 × 150 × 1200 mm size reinforced in tension zone with two bars of 8, 10 and 12 mm diameters were tested under four point loading. The beams were subjected to a number of thermal cycles varying from 7 to 28 cycles with peak temperature taken as 100, 200 and 300 °C. The effects of thermal cycles on the crack pattern, failure mechanism, first crack load and the shear strength of beams have been discussed. The shear strength of the beams has been found to increase by up to 10% at lower temperature cycles of 100 and 200 °C but reduces by up to 14% at higher temperature (300 °C) depending on the severity of thermal loading. The results of study emphasize the need for developing appropriate guidelines for the design of RC structural elements used in comparatively high temperature environment with cyclic thermal loading conditions.  相似文献   

16.
At present, finite-element methods are frequently used in the analysis of geotechnical engineering problems. The selection of an appropriate constitutive law primarily involves balancing simplicity with accuracy. Given that many practitioners still use the hyperbolic model, the adequacy of a modified version of this simplified stress-strain relation-ship to predict the nonlinear behavior of granular soils, is herein examined. Drained triaxial tests were performed on specimens composed of Maipo River sand at different relative densities. These specimens were subjected to different stress-paths in order to an extensive comparison of the measured strains and the predicted values. In addition, laboratory plate-load tests were conducted on rough, circular and strip, surface footings, which were 100-mm in diameter and 60-mm wide, respectively. The testing box, with dimensions 1.05 m × 1.05 m × 0.65 m, was filled with air-dried sand by using a raining apparatus. A field plate-load test performed on dense sandy gravel was also analyzed. From the good agreement achieved between the empirical observations and both the calculated strains and load-settlement relationships, it is concluded that the proposed hyperbolic model predicts with sufficient accuracy the nonlinear response of granular soils in most practical cases, as long as the soil mass is not close to failure.  相似文献   

17.
《Soils and Foundations》2012,52(4):712-722
Particle morphologies, i.e. particle sizes and shapes, have a marked influence on the mechanical response of granular materials including soils. Until now most investigations of particle shape have been two-dimensional and size has been most often assessed using sieving. This paper makes use of recent developments in three-dimensional imaging technologies to characterize the internal features of a soil in 3D including quantification of particle morphology. The soil investigated was Reigate sand (from Southeast England), a geologically old sand, which in its intact state exhibits significant interlocking amongst the constituent grains. Intact and reconstituted specimens having similar densities were tested under triaxial compression. The specimens were impregnated with an epoxy resin at three different stages of shear deformation and small cores from each specimen were scanned using X-ray micro-tomography. Different systems and scanning parameters were explored in order to obtain 3D, high-resolution, images with a voxel size of 5 μm (0.018×d50). The morphology measurements were compared with sieve data and measurements obtained using a 2D, image based, laser system. The sieve size is shown to correlate well with the intermediate principal axis length. Clear differences are noted between the 2D and 3D shape measurements. Breakage of fractured grains, along existing fissures, occurs both during reconstitution and shearing of the intact soil, a phenomenon that cannot be observed using invasive techniques such as sieve analysis.  相似文献   

18.
Soil stabilization using nanomaterials is an emerging research area although, to date, its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field applications. The present study advocates nano-calcium carbonate (NCC) material, a relatively unexplored nanomaterial additive, for stabilization of low-plasticity fine-grained soil having moderate organic content. The plasticity index, compaction, unconfined compressive strength (UCS), compressibility and permeability characteristics of the 0.2%, 0.4%, 0.6% and 0.8% NCC-treated soil, and untreated soil (as control), were determined, including investigations of the effect of up to 90-d curing on the UCS and permeability properties. In terms of UCS improvement, 0.4% NCC addition was identified as the optimum dosage, mobilizing a UCS at 90-d curing of almost twice that for the untreated soil. For treated soil, particle aggregation arising from NCC addition initially produced an increase in the permeability coefficient, but its magnitude decreased for increased curing owing to calcium silicate hydrate (CSH) gel formation, although still remaining higher compared to the untreated soil for all dosages and curing periods investigated. Compression index decreased for all NCC-treated soil investigated. SEM micrographs indicated the presence of gel patches along with particle aggregation. X-ray diffraction (XRD) results showed the presence of hydration products, such as CSH. Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.  相似文献   

19.
Microbial Induced Calcite Precipitation (MICP) is one of the most popular biotechnological soil stabilization techniques since it results in significant improvements in the geotechnical properties of soil. The current study presents a laboratory-scale MICP investigation performed to demonstrate the feasibility of slope soil stabilization of the Hokkaido expressway through surficial treatment. The objectives of this preliminary study are to investigate the feasibility of (i) augmenting indigenous bacteria, and (ii) implementing commercially available inexpensive low-grade chemicals in microbial induced solidifications. Syringe solidification tests were carried out using indigenous ureolytic bacteria under various temperature condition with the use of different injection sources. A high strength crust layer was achieved on the soil surface with 420 kPa unconfined compressive strength (UCS) as measured by needle penetration test after 10 days of treatment using pure chemicals (30 °C; 0.5 M cementation solution, every 24 h; bacterial culture solution, only at the beginning). However, by substituting pure chemicals with low-grade chemicals, a significant improvement in the UCS of soil (820 kPa at 30 °C) was obtained together with a 96% reduction in the treatment cost. The morphologies and crystalline structures of the precipitated carbonate were characterized by Scanning Electron Microscopical (SEM) observations. This alternative approach of introducing low-grade chemicals in MICP has the potential to provide significant economic benefits in field-scale applications.  相似文献   

20.
冻融循环对固化盐渍土的抗压强度与变形的影响   总被引:1,自引:0,他引:1  
 北方地区冬季结冰与春季融化引起土的冻胀和融沉问题,弱化了土的抗压性能。以研究冻融循环对固化盐渍土抗压性能的影响为目的,完成冻融前后盐渍土、石灰固化盐渍土、石灰+SH固化盐渍土的抗压试验。结果表明:盐渍土、石灰固化土和石灰+SH固化土的抗压强度随冻融次数的增加而减小,石灰+SH固化土的抗压强度均高于另2种土;冻融前后石灰固化土和石灰+SH固化土均为应变软化型,盐渍土则由应变软化型转变为应变硬化型。冻融循环次数相同时,石灰+SH固化土的抗压强度随含水率的增加而减小,其应力–应变曲线逐渐趋于平缓,土的脆性减弱。石灰+SH固化土具有相对较好的抗冻融性能,含水率是影响冻融后土的抗压性能的首要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号