首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Some Co(II), Cu(II), Ni(II) and Zn(II) complexes of antibacterial drug cephradine have been prepared and characterized by their physical, spectral and analytical data. Cephradine acts as bidentate and the complexes have compositions, [M(L)(2)X(2)] where [M = Co(II), Ni(II) and Zn(II), L = cephradine and X = Cl(2)] showing octahedral geometry, and [M(L)(2)] where [M = Cu(II), L = cephradine] showing square planar geometry. In order to evaluate the effect of metal ions upon chelation, eephradine and its complexes have been screened for their antibacterial activity against bacterial strains, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

2.
2-Aminothiazole undergoes condensation reactions with furane-, thiophene- and pyrrole-2-carboxylaldehyde to give tridentate NNO, NNS and NNN Schiff bases respectively. These tridentate Schiff bases formed complexes of the type [M (L)(2)]X(2) where [M=Co(II), Cu(II), Ni(II) or Zn(II), L=N-(2-furanylmethylene)-2-aminothiazole (L(1)), N-(2-thiophenylmethylene)-2-aminothiazole (L(2), N-(2-pyrrolylmethylene)-2-aminothiazole (L(3)) and X=Cl. The structures of these Schiff bases and of their complexes have been determined on the basis of their physical, analytical and spectral data. The screening results of these compounds indicated them to possess excellent antibacterial activity against tested pathogenic bacterial organisms e.g., Escherichia coli, Staphylococcus aureous and Pseudomonas aeruginosa. However, in comparison, their metal chelates have been shown to possess more antibacterial activity than the uncomplexed Schiff bases.  相似文献   

3.
Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)(2)]Cl(2), where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains.  相似文献   

4.
Co(II) and Ni(II) complexes with a Schiff base, N-(2-furanylmethylene)-2-aminothiadiazole have been prepared and characterized by their physical, spectral and analytical data. The synthesized Schiff-bases act as tridentate ligands during the complexation reaction with Co(II) and Ni(II. metal ions. They possess the composition [M(L)(2)]X(n) (where M=Co(II) or Ni(II), L=, X=NO(3) (-), SO(4) (2-), C(2)O(4) (2-) or CH(3)CO(2) (-) and n=1 or 2) and show an octahedral geometry. In order to evaluate the effect of anions upon chelation, the Schiff-base and its complexes have been screened for antibacterial activity against bacterial strains e.g., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

5.
The polymer metal complexes of transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with a new polymeric Schiff base containing formaldehyde and piperazine moieties have been synthesized by the condensation and characterized by elemental analyses, infrared spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). The results of the electronic spectra and magnetic moments indicate that the polymer–metal complexes of Mn(II), Co(II) and Ni(II) have octahedral geometry, while the complexes of Cu(II) and Zn(II) show square planar and tetrahedral geometry, respectively. The analyses of the thermal curves of all the polymer metal complexes show better thermal stability than the polymeric Schiff base. All compounds show excellent antibacterial as well as antifungal activity against three types of bacteria and two types of fungi. The antimicrobial activities were determined by using the agar well diffusion method with 100 μg/mL concentrations of polymer metal complex.  相似文献   

6.
A number of thiazole derived tridentate Schiff-bases (LH) and its metal chelates of the type [M(L)(2)X] where M=Ni(II), Cu(II) and Zn(II), L=substituted salicylaldehyde (5-H, 5-CH(3), 5-OCH(3), 5-NO(2) and 5-Cl) and X=CI have been synthesized and characterized with the help of elemental analyses, conductivity measurements, magnetic moments, UV-Vis, IR and NMR spectral data. An octahedral structure for Ni(II) and Zn(II) and a distorted octahedral structure for Cu(II) chelates have been proposed. All the Schiff-bases and their metal chelates have been screened for their biological activity against Escherichia coli, Staphylococcus aureous , Pseudomonas aeruginosa and Klebsiella pneumonae and in comparison, the metal chelates have been shown to possess more antibacterial activity than the uncomplexed Schiff-bases.  相似文献   

7.
Some novel symmetric 1,1'-dimethylferrocene derived amino acids have been prepared by the reaction of 1,1'-ferrocenedimethyldichloride with amino acids (glycine, alanine, phenylalanine and tyrosine). Their Cu(II), Co(II) and Ni(II) complexes, of the type [M(L)] where [M = Cu(II) and L = L(1)-L(5)] and [M(L)Cl(2)] where [M-Co(II)and Ni(II), L = L(1)-L(5)] have been prepared. The dicarboxylic acids and their metal complexes were characterized by their physical, analytical and spectral data. The [M(L)] complexes showed a square planar geometry whereas an octahedral geometry was observed for [M(L)Cl(2)] complexes. The title dicarboxylic acids and their metal complexes have also been screened for their antibacterial activity.  相似文献   

8.
Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and (13)C-NMR, (1)H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species.  相似文献   

9.
Co(II) and Ni(II) complexes Schiff base, N-(2-thienylmethylene)-2-aminothiadiazole have been prepared and characterized by their physical, spectral and analytical data. The title Schiff-base acts as NNS donor tridentate during the complexation reaction with these metal ions having a composition, [M(L)(2)]X(n) where M=Co(II) or Ni(II), L=, X=NO(3) (-), SO(4) (2-), C(2)O(4) (2-) or CH(3)CO(2) (-) and n=1 or 2 and show an octahedral geometry. In order to evaluate the effect anions upon chelation, the Schiff-base and its new complexes have been screened for their antibacterial activity against bacterial strains e.g., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

10.
Two novel chelating resins are prepared by anchoring diethylenetriamine bis‐ and mono‐furaldehyde Schiff bases onto the macroporous GMA‐DVB copolymer beads and utilized for the adsorption towards Cu(II), Co(II), Ni(II), and Zn(II). FTIR spectra show that Schiff base groups have been successfully introduced into the polymer matrix and the chelating resins can form complexes with the metal ions. The chelating resins show a higher adsorption capacity toward Cu(II). The conductivity method can be used for determining the adsorption kinetics of the resins towards metal ions. The results show that the adsorption rates towards Cu(II) are much higher than those towards other ions and pseudo second‐order and intraparticle diffusion models can be applied to treat the adsorption amount‐time data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.  相似文献   

12.
A condensation reaction of 2-amino-1,3,4-thiadiazole with 2-pyrrolecarboxaldehyde to form tridentate NNN donor Schiff base has been performed. The prepared Schiff base was further used for the formation of metal complexes having stoichiometry [M(L)(2)]X(n), where M=Cu(II) or Zn(II), L=N-(2-pyrrolylmethylene)-2-amino-1,3,4-thiadiazole, X=SO(4) (2-), NO(3) (-), C(2)O(4) (2-) or CH(3)CO(2-) and n=1 or 2. The new compounds described here have been characterized by their physical, spectral and analytical data, and have been screened against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of the Schiff base increased upon chelation/complexation, having the same metal ion (cation) but different anions opening up a novel approach in finding new ways to fight against antibiotic resistant strains.  相似文献   

13.
Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species.  相似文献   

14.
Schiff base was prepared via condensation of ethanedihydrazide with 2-hydroxy benzaldehyde and further this monomeric Schiff base polymerize with formaldehyde and barbituric acid and form polymeric Schiff base (PLSB) ligand. The ligand and its polymer metal complexes were characterized by using elemental analysis, IR, UV–VIS, 1HNMR, magnetic susceptibility and thermogravimetric studies. On basis of elemental analysis and spectral studies, six coordinated geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and four coordinated for Cu(II) and Zn(II) complexes. PLSB act as a tetradentate and coordinate through the azomethine nitrogen and phenolic oxygen. The thermal behavior of these polymer metal complexes showed that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The (PLSB) ligands and its polymer metal complexes were screened against bacterial species Escherichia coli, Staphylococcus aureus, Bacillus subtilis and fungal species Aspergillus flavus, Candida albicans, A. niger. The activity data show that the metal complexes were more potent than the parent Schiff bases.  相似文献   

15.
A novel polymeric Schiff base was synthesized by the reaction of a Schiff base from 2,4‐dihydroxy benzaldehyde and aniline with acryloyl chloride and was polymerized in methyl ethyl ketone at 70°C with benzoyl peroxide as a free‐radical initiator. Polychelates were obtained in an alkaline solution of poly(2‐hydroxy‐4‐acryloyloxy‐N‐phenylbenzylidine) with aqueous solutions of metal ions such as Cu(II), Ni(II), Co(II), Ca(II), Cd(II), Mn(II), and Zn(II). The polymeric Schiff base and polychelates were characterized with elemental analysis and spectral studies. The elemental analysis of the polychelates suggested that the metal‐to‐ligand ratio was 1:2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polychelates of the Cu(II) complex were square‐planar, those of the Ni(II), Mn(II), and Co(II) complexes were octahedral, and those of the Ca(II), Cd(II), and Zn(II) complexes were tetrahedral. X‐ray diffraction studies revealed that the polychelates were highly crystalline. The thermal properties of the Schiff base and polychelates were also examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 494–500, 2004  相似文献   

16.
Solution studies were performed pH-metrically to study the interaction of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal ions with 5-fluorouracil (5FU) and histamine (Hm) separately (binary) and in the presence of each other (ternary) at 25+/-0.1( degrees )C temperature and a constant ionic strength of 0.1 M NaNO(3) in aqueous solution. The ternary complexes have been found to be more stable than the corresponding binary complexes as shown by the positive value of DeltalogK. The species distribution curves have been obtained using the computer programme BEST. On the basis of species distribution results, efforts were also made to prepare some mixed complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions by performing the reaction of their metal nitrates, 5FU and Hm in aqueous ethanol medium at suitable pH. The isolated solid complexes were characterized by different physico-chemical method in order to suggest the possible binding site of the ligands and the structure of the resultant complexes. All these complexes were checked for their antitumour activity by injecting in Dalton's lymphoma (DL) and Sarcoma-180 (S-180) bearing C(3)H/He mice. The results indicate that some complexes have good antitumour activity both in vivo and in vitro.  相似文献   

17.
A new polymeric Schiff base containing formaldehyde and 2‐thiobarbituric acid moieties was synthesized by the condensation of a monomeric Schiff base derived from 2‐hydroxyacetophenone and hydrazine. Polymer–metal complexes were also synthesized by the reaction of the polymeric Schiff base with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetate. The polymeric Schiff base and its polymer–metal complexes were characterized with magnetic moment measurements, elemental analyses, and spectral techniques (infrared, 1H‐NMR, and ultraviolet–visible). The thermal behaviors of these coordination polymers were studied by thermogravimetric analysis in a nitrogen atmosphere up to 800°C. The thermal data revealed that all of the polymer–metal complexes showed higher thermal stabilities than the polymeric Schiff base and also ascribed that the Cu(II) polymer–metal complex showed better heat resistant properties than the other polymer–metal complexes. The antimicrobial activity was screened with the agar well diffusion method against various selected microorganisms, and all of the polymer–metal complexes showed good antimicrobial activity. Among all of the complexes, the antimicrobial activity of the Cu(II) polymer–metal complex showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20‐ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na+, K+, NH4+, Ca2+, Cl?, Br?, NO3?, NO2?,and CH3CO2?. The major advantage is that the removal is achieved without altering the pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1536–1539, 2005  相似文献   

19.
O‐aminophenol was reacted with glutraldehyde to obtain Schiff base, which was then reacted with formaldehyde in slight acidic medium to generate phenolic groups. Now the substituted Schiff base was reacted with the transition metal acetates of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) to get polymeric metal complexes. Their structures have been elucidated on the basis of elemental analyses, 1H NMR spectra, 13C NMR spectra, magnetic measurements, thermogravimetric analyses, electronic spectra, and infrared spectra. The results are in accordance with an octahedral environment around the central metal ion. The polychelates of Mn(II), Co(II), Ni(II), and Cu(II) are paramagnetic while Zn(II) polychelate was found to be diamagnetic. The synthesized Schiff base acted as a uninegative bidentate ligand and bonding occurs through the hydroxyl oxygen and nitrogen atoms. The thermal behavior of these coordinating polymers was studied by TGA in nitrogen atmosphere up to the temperature range of 800°C. All the synthesized polychelates were also screened for their biocidal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis (bacteria), Candida albicans, and Muller species (yeast) by using agar well diffusion method. All the metal polychelates show promising antimicrobial activities. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 124:3971–3979, 2012  相似文献   

20.
Some acylhydrazine derived ONO donor Schiff bases and their Co(II) and Ni(II) complexes have been prepared having the same metal ion (cation) but different anions. These synthesized metal(II) complexes have been characterized on the basis of their elemental analyses, magnetic moment, molar conductance, and IR and electronic spectral data. All of the Schiff base ligands function as tridentates and the deprotonated enolic form is preferred for coordination. In order to evaluate the effect of anions on the bactericidal activity, these synthesized complexes, in comparison to the uncomplexed Schiff bases have been screened against bacterial species., Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号