首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We have carried out the electrical discharge machining (EDM) of submicron holes using ultrasmall-diameter electrodes. Two types of electrode were used: tungsten electrodes fabricated by the combination of wire electrodischarge grinding and electrochemical machining, and silicon electrodes originally designed as probes for scanning probe microscopes. The diameters of the former and latter were 1 μm or less, and less than 0.15 μm, respectively. Holes were drilled using a relaxation-type pulse generator at an open-circuit voltage of less than or equal to 20 V with the machine's stray capacitance as the only capacitance. Using tungsten electrodes, holes of less than 1 μm in diameter and more than 1 μm in depth were successfully drilled. A 1.3-μm-wide slot was also fabricated by drilling many holes with a small pitch. It was possible to drill holes of approximately 0.5 μm diameter using silicon electrodes because the electrode diameter was less than those of the tungsten electrodes. These holes have the smallest reported diameter for holes drilled by EDM, indicating the possibility of submicron- and nanoscale machining by EDM.  相似文献   

2.
Electrochemical discharge machining (ECDM) is a cost-effective machining process used to shape non-conductive materials such as glass and ceramics. The process can overcome poor machinability of hard and brittle materials. Different types of physical phenomena can be added to the ECDM components to improve the machining efficiency. As the main target of this paper, ultrasonic vibration was integrated to the cathode of the ECDM process (UAECDM), which resulted in vibration concentration only to the machining zone. In order to design the experimental configuration, modal analysis was used. Machining speed was the main output of this investigation. Gas film and electric discharge were two main physical phenomena during ECDM. The thickness of gas film, location, and pattern of discharges were determined, experimentally. Also, current signal was a useful tool that could record significant details of involved mechanisms and phenomena during machining. Images of gas film showed that the application of ultrasonic vibration decreased the thickness of gas film by 65%. In addition, the vibration amplitude of 10 μm created the most uniform current signal, which had a considerable effect on the material removal rate (MRR). Results showed that all levels of vibration amplitude increased the machining speed during discharge and hydrodynamic regimes of the machining process.  相似文献   

3.
Electrochemical discharge machining (ECDM) is a suitable process for the fabrication of microholes and microchannels in the nonconductive materials such as glass. In the ECDM milling, in some conditions, the tool is penetrated to the workpiece, which may lead to a breakage in the tool. In order to avoid the tool breakage, machining the parameters such as feed rate should be selected appropriately. In this study, the bending force applied on the tool was evaluated as a function of tool diameter, electrolyte concentration, presence of the magnetic field, and tool feed rate. The maximum feed rate, which keeps the bending tool force in the constant ranges, is desirable. According to the experimental results and combination of the machining parameters, the optimum feed rate was obtained. The results showed a decrease in the bending force by increasing the electrolyte concentration and elevating the applied voltage. In addition, the significant effect of a magnetic field on the reduction of bending force in the lower concentration of electrolyte (15 wt%) was observed.  相似文献   

4.
Today, polydimethylsiloxane (PDMS) is widely used in medical and industrial applications. Lithographic processes are commonly used to create microchannels in PDMS, which have encountered several limitations such as high fabrication time and cost. In this study, the effect of tool characteristics (distance, geometry and diameter) and electrolyte properties (temperature and type) on the surface quality, surface roughness and dimensional accuracy of the created microchannel on PDMS through electrochemical discharge machining (ECDM) are investigated for the first time. The results stated the capability of ECDM in the formation of channels with the similar quality of created channels by lithography. In addition, it has been declared that increasing the tool/workpiece distance would lead to an increase in the surface roughness as well as deteriorated surface quality of the grooves due to the longer traveled distance by the particles and the subsequent energy increase by colliding the workpiece surface. According to the obtained results, increasing the mentioned distance from 20 μm to 150 μm was followed by a 356% increase in the surface roughness. Moreover, by the utilization of grooved tools instead of simple ones, thicker gas film would be formed at the vicinity of the tool, and consequently, intensified stray sparks and the resultant increased material removal area would be achieved. Furthermore, rising the electrolyte temperature from 25 °C to 65 °C led to an increase in surface roughness from 0.109 to 0.140 μm. Additionally, respective reductions of 33% and 3% in surface roughness and microchannel width were attained by 20% reduction in the tool diameter.  相似文献   

5.
A grinding-aided electrochemical discharge machining (G-ECDM) process has been developed to improve the performance of the conventional ECDM process in machining particulate reinforced metal matrix composites (MMCs). The G-ECDM process functions under a combined action of electrochemical dissolution, spark erosion, and direct mechanical grinding. The tool electrode has a coating containing a hard reinforcement phase of diamond particles. The MMC employed in this study was Al2O3 particulate reinforced aluminum 6061 alloy. The material removal mechanism of this hybrid process has been analyzed. The results showed that the grinding action can effectively remove re-cast material deposited on the machining surface. The surface roughness (R a) measured for the G-ECDM specimen was ten times smaller than that of the specimen machined without grinding aid (i.e., ECDM alone). Moreover, the material removal rate (MRR) of G-ECDM was about three times higher than that of ECDM under the experimental conditions of this study. The voltage waveform and crater distribution were also analyzed, and the experimental results showed that the G-ECDM process operates in a stable condition. The relative importance of the various processing parameters on MRR was established using orthogonal analysis. The results showed that MRR is influenced by the machining parameters in the order of duty cycle?>?current?>?electrolyte concentration. This study showed that the G-ECDM process is superior to the ECDM process for machining particulate reinforced MMCs, where a higher machining efficiency and a better surface quality can be obtained.  相似文献   

6.
The electrochemical discharge machining (ECDM) process has the potential to machine electrically non-conductive high-strength, high-temperature-resistant (HSHTR) ceramics, such as aluminum oxide (Al2O3). However, the conventional tool configurations and machining parameters show that the volume of material removed decreases with increasing machining depth and, finally, restricts the machining after a certain depth. To overcome this problem and to increase the volume of material removed during drilling operations on Al2O3, two different types of tool configurations, i.e., a spring-fed cylindrical hollow brass tool as a stationary electrode and a spring-fed cylindrical abrasive tool as a rotary electrode, were considered. The volume of material removed by each electrode was assessed under the influence of three parameters, namely, pulsed DC supply voltage, duty factor, and electrolyte conductivity, each at five different levels. The results revealed that the machining ability of the abrasive rotary electrode was better than the hollow stationary electrode, as it would enhance the cutting ability due to the presence of abrasive grains during machining.  相似文献   

7.
This paper describes an electrodischarge machine for micro-hole boring capable of improved accuracy and performance in boring precision small diameter holes in components such as ink jet nozzles for printers, electron gun apertures for graphic displays, micro-connectors for high-speed computers, and optical components for telecommunications. Micro-energy discharging permits machining of 15–300 μm diameter micro-holes with a roundness accuracy of 0.5 μm or better and a surface roughness less than 0.1 μm. No bending stress is applied to the tool electrode, therefore high precision machining of cylindrical surfaces, machining with very thin side-walls, and machining of overlapping multiple-holes are all possible, regardless of the hardness of any electrically conductive material. Tool electrodes of any diameter are machinable using reversed-polarity electric discharge and are replaceable in the same way as conventional drills. Travel of the tool electrode is controlled automatically by microprocessor, thus eliminating the need for a skilled operator.  相似文献   

8.
3D micro-electrode used in micro electrical discharge machining (micro-EDM) is difficult to be fabricated. Based on laminated object manufacturing (LOM) process, this paper superimposed multilayer 2D micro-structures together to fit out 3D micro-electrode and applied it in micro-EDM to process 3D micro-cavity mold. Firstly, 100-μm-thick Cu foils were cut by wire-electrical discharge machining (WEDM) to obtain multilayer 2D micro-structures, and then these 2D micro-structures were connected together to fit out 3D micro-electrode through vacuum pressure thermal diffusion welding. Secondly, under the effect of 80-V voltage, 0.2-MHz pulse frequency, 800-ns pulse width, and 4200-ns pulse interval, the 3D micro-electrode was applied in micro-EDM and 3D micro-cavity mold with high surface quality was obtained. Thirdly, in order to reduce the adverse impact of electrode wear on machining precision of 3D micro-cavity mold, 3D queue micro-electrode was used to process the same 3D micro-cavity mold, in which the first electrode is for rough machining and the others for fine machining. Finally, based on the above studies, two kinds of 3D queue micro-electrodes were fabricated, and the 3D micro-cavity molds with surface roughness Ra?=?0.48 μm were obtained through micro-EDM. Compared with the scanning 3D micro-EDM process, the 3D micro-cavity mold can be obtained through up and down reciprocating method of the 3D queue micro-electrode, featuring simple machining process and high efficiency.  相似文献   

9.
Electrochemical discharge machining (ECDM) is a non-traditional machining process which is used to create micro-features on non-conductive materials. Micro holes and micro channels are the most interested features that have been fabricated by researchers. In recent years, some technical augmentations have been added to the ECDM process to achieve a more efficient machining process, but the employment of each augmentation in the most efficient way is not subjected. In this research, ultrasonic vibration is concentrated on the tool tip which directly and continuously effects on the machining zone and avoids global undesirable effects. For this purpose, modal analysis is used to design a special configuration which achieves the maximum amplitude of vibration in the tool tip. Also, an analytical model is presented for both of the electro-chemical discharge machining (ECDM) and ultrasonic assisted electro-chemical discharge machining (UAECDM) to study the effect of ultrasonic vibration on the thickness of gas film. Practical gas film thickness, machining speed, entrance overcut and tapering zone are studied for both of the ECDM and UAECDM to comprehensive understanding the effect of integration of ultrasonic vibration into the traditional ECDM process. Captures of gas film in different condition confirmed that ultrasonic vibration has reduced the thickness of gas film. Same behavior was achieved by employment of the analytical modeling. As a result, numerous small discharges were achieved which increased the material removal rate (MRR) and hole accuracy, simultaneously. Results showed that ultrasonic vibration can increase MRR up to 82%. Also, tapering zone and entrance overcut deviation as accuracy parameters improved 50% and 40%, respectively.  相似文献   

10.
This paper describes the measurement of a cylindrical surface with sinusoidal micro-structures over a large area on a diamond turning machine. The sinusoidal micro-structures, which are fabricated on the periphery surface of a cylinder by the fast tool servo-based diamond turning, are superposition of periodic sine-waves along the cylinder axis and the cylinder circumference with amplitudes of 100 nm and wavelengths of 100 μm, respectively. An optical two-dimensional (2D) slope sensor with a multi-spot light beam is developed for measurement of the 2D local slopes of the sinusoidal micro-structured surface. A cylindrical lens is employed in the sensor for removing the influence of the curvature of the cylinder surface. Experiments of fabrication and measurement of the sinusoidal micro-structured surface on an ultra-precision diamond turning machine are carried out.  相似文献   

11.
Electro-chemical micro drilling using ultra short pulses   总被引:1,自引:0,他引:1  
Electro-chemical machining (ECM) has been rarely applied in micro machining because the electric field is not localized. In this work, ultra short pulses with tens of nanosecond duration are used to localize dissolution area. The effects of voltage, pulse duration, and pulse frequency on the localization distance were studied. High quality micro hole with 8 μm diameter was drilled on 304 stainless steel foil with 20 μm thickness. Localization distance can be manipulated by controlling the voltage and pulse duration, and various hole shapes were produced including stepped holes and taper free holes.  相似文献   

12.
As a nontraditional machining process, electrochemical discharge machining (ECDM) can apply to hard and brittle materials such as glass and ceramic. Improvement of process efficiency is an important topic that has been addressed in many investigations using various techniques such as magnetic field and ultrasonic vibrations.Nano particles are new and advanced materials that can be dispersed in a fluid to obtain a nano fluid with desirable specifications. This method can be implemented in the ECDM process by the application of the nano electrolyte. Nano electrolyte can present enhanced properties, in particular enhanced electrical and thermal conductivities which lead to more powerful discharges and greater material removal.In order to study the variation of discharge physics, consequent captures from discharges were taken. Besides using current signal diagrams, larger numbers of discharges were found using nano electrolytes. Results of hole depth showed that both Cu and Al2O3 nano electrolytes improved the hole depth as 21.1% and 18.7%, respectively. An undesirable effect of nano electrolyte was observed on the entrance overcut, which raised 8.3% and 10.7% using Cu and Al2O3 nano electrolytes, respectively, in comparison to the simple electrolyte. This drawback is negligible compared to the significant improvement of hole depth. SEM images of tool wear showed larger molten materials on the tool main edges by the application of nano electrolyte.  相似文献   

13.
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-μm accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-μm precision. The tool holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-μm accuracy, and it has significantly reduced the time required to set a tool.  相似文献   

14.
In this work, effects of magnetic field orientation, machining voltage and electrolyte concentration on electrochemical discharge machining (ECDM) performance have been studied. The microchannels have been machined on the glass substrate; microchannel's depth and surface quality have been taken as indexes of machining characteristic. Experimental results show that the Lorenz force of magnetic field affects a direction of bubble's motion, consequently, changes the electrochemical discharge behavior of electrolyte. The presence of magnetic field causes magnetohydrodynamic (MHD) convection which, by its turn, accelerates the repulsion of the bubbles from the cathodic surface. However, it should mention that the direction of bubble movement depends on the magnetic field orientation. If the magnetic field orientation induces upward Lorenz force (downward Lorenz force), the gas bubbles will repel from (will attract to) inter-electrode area. The obtained results demonstrate that when the magnetic field applies, the machined surface will be smoother for the lower concentration values of electrolyte and higher machining voltages. Enhancements of both the machining voltage and electrolyte concentration increase the machining depth. For the same values of applied voltages, application of magnetic field will also increase the machining depth in a certain machining process duration; this will be intensified for the lower values of electrolyte concentration. The results of this study explain how the combination of the magnetic field orientation and the values of machining voltage and electrolyte concentration should be defined in order to increase both the channel depth and surface quality.  相似文献   

15.
Electrochemical discharge machining (ECDM) can be applied as a non-traditional processing technology for machining non-conductive materials such as glass and ceramics, based on the phenomena of evoked electrochemical discharges around the tool electrode. The material removal mechanism of ECDM is noticeably complex and difficult to experimentally characterize. In this paper, finite element models were proposed to predict the material removal in the ECDM discharge regime. First, the single-pulse discharge on a tapered electrode was modeled. It was found that about 30.5% of the discharge energy is transferred to the workpiece. The continuous discharge on a cylindrical electrode was thereafter modeled according to this phenomenon, in which the removal of a layer of the workpiece material starts from the projected contour of the edge of the electrode end and extends inward during the ECDM processing. The effective discharge ratio for material removal was calculated to be 10.1%. The drilling depths of holes at different applied voltages were predicted by the proposed finite element method. It was found that the predicted values were consistent with the experimental results.  相似文献   

16.
Micro wire electrochemical machining is a useful technique to produce high-aspect-ratio slit micro-structures. To improve processing stability, the axial electrolyte flow is adopted to renew electrolytes in the machining gap. A wire electrochemical micro-machining system with an axial electrolyte flow unit is developed. A mathematical model of tool feed rate is presented. To investigate the influence of electrolyte flow on processing stability and machining efficiency, comparative experiments were carried out. The influence of applied voltage and electrolyte concentration on machining accuracy is studied and the parameters such as electrolyte flow rate and applied voltage are optimized. Low initial machining gap is applied to decrease the stray current machining in the initial machining period. With the optimal parameters, the high-aspect-ratio micro spline and curved flow channel with the slit width of 160?μm have been fabricated on 5-mm-thick stainless steel (0Cr18Ni9). The width of the slit is uniform and the aspect ratio is 31.  相似文献   

17.
The electrochemical discharge machining (ECDM) process has a potential in the machining of silicon nitride ceramics. This paper describes the development of a second order, non-linear mathematical model for establishing the relationship among machining parameters, such as applied voltage, electrolyte concentration and inter-electrode gap, with the dominant machining process criteria, namely material removal rate (MRR), radial overcut (ROC) and thickness of heat affected zone (HAZ), during an ECDM operation on silicon nitride. The model is developed based on response surface methodology (RSM) using the relevant experimental data, which are obtained during an ECDM micro-drilling operation on silicon nitride ceramics. We also offer an analysis of variance (ANOVA) and a confirmation test to verify the fit and adequacy of the developed mathematical models. From the parametric analyses based on mathematical modelling, it can be recommended that applied voltage has more significant effects on MRR, ROC and HAZ thickness during ECDM micro-drilling operation as compared to other machining parameters such as electrolyte concentration and inter-electrode gap.  相似文献   

18.
Maskless electrochemical micromachining (EMM) is a prominent and unique surface texturing method to fabricate the arrays of microslots. This article investigates the generation of microslot arrays using maskless EMM method. The developed prototype maskless EMM setup consists of EMM cell, power supply connections, electrode holding devices and constricted vertical cross flow electrolyte system for the fabrication of microslot arrays economically. One textured cathode tool with SU-8 2150 mask is used to produce 22 microslot arrays. Influences of EMM process parameters including voltage, electrolyte concentration, inter electrode gap, flow rate and machining time on the machining performance that is, width overcut, depth and surface roughness (Ra) of microslot arrays are investigated. For lower width overcut, controlled depth, and lower surface roughness, machining with lower voltage, lower electrolyte concentration, lower inter electrode gap, higher flow rate and lower machining time are recommended. From the analysis, it is observed that the best machining conditions including inter electrode gap of 50?μm, applied voltage of 6 V, electrolyte concentration of 20?g L?1, flow rate of 5.35 m3 hr?1 and machining time of 1?min fabricate regular microslot array with mean width overcut of 24.321?μm, mean machining depth of 10.7?μm and mean surface roughness of 0.0101?μm.  相似文献   

19.
The electrochemical discharge machining (ECDM) process has a potential in the machining of silicon nitride ceramics. This paper describes the development of a second order, non-linear mathematical model for establishing the relationship among machining parameters, such as applied voltage, electrolyte concentration and inter-electrode gap, with the dominant machining process criteria, namely material removal rate (MRR), radial overcut (ROC) and thickness of heat affected zone (HAZ), during an ECDM operation on silicon nitride. The model is developed based on response surface methodology (RSM) using the relevant experimental data, which are obtained during an ECDM micro-drilling operation on silicon nitride ceramics. We also offer an analysis of variance (ANOVA) and a confirmation test to verify the fit and adequacy of the developed mathematical models. From the parametric analyses based on mathematical modelling, it can be recommended that applied voltage has more significant effects on MRR, ROC and HAZ thickness during ECDM micro-drilling operation as compared to other machining parameters such as electrolyte concentration and inter-electrode gap.  相似文献   

20.
This paper presents a novel multi-cut process planning method and a new electrode wear compensation method based on a machine vision system for three-dimensional (3D) micro-electrical discharge machining (micro-EDM). Front wear and corner wear of tool electrode can be measured and compensated in a direct manner by the vision system??s image processing software capabilities. Experiments have shown that corner wear ratio (defined as a ratio between the length of corner wear and electrode diameter) is linearly proportional to machining length under a fixed machining depth condition. Track overlapping between the two adjoining paths is designed appropriately according to the corner wear ratio. Experimental results not only indicate that the proposed multi-cut process planning and electrode wear compensation methods can significantly improve machining accuracy and reduce machining time for the micro-EDM process, they also demonstrate that the X?CY dimensional errors of micro-structures can be controlled within 10???m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号