首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 通过实验室真空感应炉试验,研究了超低氧条件下钢中复合非金属夹杂物的形成。研究发现:在含有一定硫的超低氧钢中高熔点氧化物夹杂很少,大部分为MnS。钢中Al2O3的尺寸较MgO-Al2O3系夹杂要大。以高熔点夹杂物为异质形核核心析出的MnS能显著提高钢材的疲劳寿命,此种复合夹杂物的形成与钢液成分、高熔点夹杂物的尺寸有关。  相似文献   

2.
杨俊  杜江  陈波涛  吴俊雄 《钢铁》2015,50(1):19-26
 研究了采用LF精炼顶渣控制技术对钢液进行超低氧冶炼时,钙处理对钢中非金属夹杂物的影响。试验在转炉出钢时采用铝终脱氧,LF精炼过程采用强脱氧、高碱度、强还原性精炼顶渣对钢液进行超低氧冶炼,比较了钙处理和不钙处理的钢液中非金属夹杂物转变的情况。结果表明,采用精炼顶渣控制技术冶炼超低氧钢时,钢液不需要进行钙处理就能实现铝脱氧产物Al2O3→MgO·Al2O3尖晶石→CaO-MgO-Al2O3类复合夹杂物的转变,得到炼钢温度下呈液态的复合氧化物夹杂,这些液态的夹杂物容易通过碰撞长大上浮去除,得到高洁净度的钢液,且残留在钢液的氧化物夹杂为较低熔点的复合氧化物,在浇注过程中不会产生水口结瘤。  相似文献   

3.
赵东伟  李海波  高攀  杨健  郝丽霞 《钢铁》2016,51(1):25-32
 通过采用扫描电镜对BOF-LF-RH-CC非钙处理工艺生产车轮钢系统取样样品中夹杂物的形貌、尺寸及组成的分析,研究了精炼和凝固过程氧化物夹杂的形成、上浮去除和析出过程,以及轧制过程夹杂物的变形行为。研究发现,在非钙处理条件下,LF精炼过程会形成大量MgO-Al2O3夹杂和CaO-Al2O3夹杂,并且在RH精炼过程中存在MgO-Al2O3夹杂向CaO-Al2O3夹杂的转变过程,最终导致铸坯中出现低变性CaO-Al2O3夹杂;在软吹和镇静过程中,炉渣或空气对钢液的二次氧化与钢液中夹杂物上浮去除存在动态平衡;在钢液凝固过程中,固液界面的Al2O3等氧化物夹杂为MnS的析出提供了异质形核点,形成半包裹状的Al2O3-MnS类复合夹杂物;在轧制过程中,团簇状Al2O3夹杂容易被轧碎在板卷中形成点链状,高熔点半包裹的Al2O3-MnS类复合夹杂物被轧制成小尾巴状,而低熔点的CaO-Al2O3-MnS的复合夹杂形成连续的条状。  相似文献   

4.
摘要:为了研究不同脱氧方式对高铝钢中非金属夹杂物的影响,采用高温试验和热力学计算相结合的方法,对比分析了先SiMn后Al和先Al后SiMn两种脱氧方式下高铝钢中夹杂物形貌、类型、数量和尺寸特征。结果显示:先加入SiMn后,生成大量液态球形的Mn-Si-Al-O系复合夹杂物,再加入Al后夹杂物演变为Al2O3,且夹杂物数量明显减少;采用先Al后SiMn脱氧方式时,高铝钢中夹杂物始终以Al2O3为主,夹杂物最终数量相对较低。2种脱氧方式钢中夹杂物平均等效圆直径和尺寸分布相差不大。此外,采用先SiMn后Al进行脱氧时,发现尺寸较小的AlN颗粒附着在Al2O3夹杂物表面形成Al2O3-AlN复合夹杂物。而采用先Al后SiMn脱氧方式时,高铝钢中发现单一AlN夹杂物和Al2O3-AlN复合夹杂物,AlN夹杂物的形成与钢水中的氧势和合金原料有关。  相似文献   

5.
《炼钢》2015,(3)
通过采用锰铁、硅铁合金预脱氧,钛、锆单独或复合终脱氧的脱氧制度,研究了某低碳钢种脱氧后,钢中夹杂物的形貌、成分、尺寸分布情况。结果表明:采用Zr、Ti脱氧可以获得尺寸较小且数量较多的夹杂物粒子,加Ti后试样中的夹杂物主要为TixOy,Al2O3,MnS的复合夹杂;加Zr试样,钢中夹杂物主要为ZrxOy,SiO2,Al2O3,MnS系复合夹杂;复合添加Ti、Zr的试样,其夹杂物主要为ZrxOy,TixOy,SiO2,Al2O3,MnS复合夹杂物。Zr,Ti复合氧化物粒子能促进晶内针状铁素体形成。  相似文献   

6.
通过热力学计算控制钢中喂钙量,把钙处理20CrMo钢中Al2O3变性为低熔点的12CaO·7Al2O3上浮去除,从而使钢中夹杂物满足评级要求;并用Thermo-Calc软件模拟钢液凝固过程中CA6、CA、CA2钙铝酸盐及MnS夹杂物的析出情况.用SEM对轧材中纺锤状夹杂物进行分析,少量夹杂物内核颜色较深,为Al2O3、CaS等夹杂,外层包裹的夹杂颜色较浅,为MnS夹杂.说明凝固过程中钢液中先析出的Al2O3、CaS等复合夹杂可以被后析出的MnS捕获作为其核心.  相似文献   

7.
《炼钢》2015,(6)
针对超低氧含量特殊钢中大型非金属夹杂物问题开展了相关工业试验和实验室研究,研究结果表明:1)当钢液w(T.O)低于(13~15)×10~(-6)后,通过LF精炼进一步降低钢液总氧和夹杂物含量变得困难。而RH真空精炼在钢液超低氧含量条件下则具有非常强的进一步降氧和去除夹杂物的能力,将RH精炼时间延长至33 min左右,钢液w(T.O)降至4.7×10-6,尺寸1.5μm以上夹杂物数量减少至1.77个/mm~2。2)超低氧特殊钢中夹杂物在钢液二次精炼过程会经历"Al_2O_3→MgO-Al_2O_3→CaO-MgOAl_2O_3→CaO-Al_2O_3"转变,其中Al_2O_3向MgO-Al_2O_3系夹杂物转变是由于钢液[Mg]与Al_2O_3夹杂物的反应,而[Mg]主要来源于[Al]还原钢包包衬MgO的反应。3)在w(T.O)=5.9×10-6的特殊钢连铸圆坯试样中检测到尺寸100~330μm的大型簇群状CaO-MgO-Al_2O_3系夹杂物,构成簇群的微小颗粒与钢液中微小夹杂物类似,表明是在连铸过程由钢液中微小夹杂物聚合而成。4)经过RH精炼,钢中夹杂物绝大多数已转变为液态CaO-Al_2O_3系夹杂物,而连铸过程发生的二次氧化,会将钢中夹杂物转变为高熔点的CaO-Al_2O_3系、MgO-Al_2O_3系或CaO-MgO-Al_2O_3系固态夹杂物,固态夹杂物更易聚合为大型夹杂物,因此在超低氧特殊钢生产中必须非常严格地控制二次氧化。  相似文献   

8.
在真空感应炉中采用了真空碳脱氧再加钛终脱氧的脱氧工艺冶炼出了与高级别管线钢成分接近的试样钢,对钛脱氧钢中超细夹杂物的外部形貌、尺寸、内部结构和物相组成等进行了研究。在扫描电镜下通过对金相试样和电解提取的夹杂物的研究表明,钢中夹杂物是Ti-O-Mn-S形成的尺寸为1~3μm的球形复合夹杂物。通过离子减薄后观察了夹杂物的内部结构,中心是Ti-O化合物,外围是Mn-S化合物;通过电子背散射衍射(EBSD)对夹杂物物相组成的分析表明,该复合夹杂物是有利于针状铁素体(IGF)形核的Ti2O3和在凝固过程中以Ti2O3为核心形核的MnS。  相似文献   

9.
超低碳钢钢中夹杂物的研究   总被引:1,自引:0,他引:1  
唐复平  常桂华  栗红  陈本文 《钢铁》2007,42(1):20-22,30
为控制超低碳钢中的簇状夹杂物,对超低碳钢中的夹杂物和与全氧含量的关系进行了研究.钢中的夹杂物主要是Al2O3夹杂和Al2O3-TiN复合夹杂,独立夹杂物尺寸大部分小于10 μm.铸坯中w(TO)小于0.003 0%时,钢中仍存在簇状Al2O3夹杂;Al2O3簇状夹杂物与铸坯中全氧含量没有直接关系,所以钢中的全氧含量不能完全代表钢中夹杂物的水平.钢中的簇状Al2O3夹杂物与RH脱碳结束活度氧有关,要控制超低碳钢中簇状Al2O3夹杂物必须稳定生产工艺,减少RH加铝升温,使RH脱碳结束活度氧保持在一定范围.  相似文献   

10.
使用镁合金脱氧剂研究了ZG25钢液的脱氧行为,选取Al、Al-Mg、Mg-Al合金分别对钢液脱氧,对比脱氧后钢中夹杂物的变化情况.结果表明:含镁合金在对钢水脱氧的同时具有较强的脱硫能力;含镁合金终脱氧后夹杂物大多转化为复合夹杂物,其中Al2O3夹杂物主要转变为MgO·Al2O3,FeS和MnS等硫化物夹杂转变为MnS·MgS等复合硫化物夹杂.  相似文献   

11.
钢中MgAl2O4夹杂物熔点高不变形,对高级别钢种质量危害大,是近几年洁净钢领域研究的热点。阐述了MgAl2O4夹杂物产生的背景,总结了钢中MgAl2O4夹杂物研究现状,提出需要对MgAl2O4夹杂物向低熔点四元复合氧化物夹杂转变的动力学作进一步研究。  相似文献   

12.
叶飞  陈伟庆  周新龙 《钢铁》2007,42(10):76-79
研究结果表明:硅锰脱氧的含硼低碳钢中的夹杂物以长条状的MnO-SiO2夹杂物为主,其长宽比为8.7~16.6,变形程度高;随着钢中硼含量的增加,长条状变形夹杂物的比例呈上升的趋势;铝脱氧的低铝含硼低碳钢中的夹杂物以MnO-Al2O3-TiO2与MnS的长条状复合夹杂物为主,其长宽比为9.3~16.3.对比分析认为,这两类长条状夹杂物均为含B2O3的低熔点氧化物塑性夹杂.高铝的含硼低碳钢中的氧化物夹杂主要是Al2O3,未发现变形的长条状氧化物夹杂.  相似文献   

13.
黄宇  谢有  成国光 《中国冶金》2018,28(8):10-16
通过国内外23CrNi3Mo钎具钢的洁净度对比,找出在冶金环节上与国外钎具钢的差距,并对国外钎具钢中夹杂物的生成机理进行了理论热力学计算。结果表明,国外钎具钢的洁净度较高,易偏析元素砷、磷等含量远低于国内钎具钢;夹杂物的类型主要以单独的Mg Al O类夹杂物和Mg Al O外包裹MnS类夹杂物为主,夹杂物的尺寸主要为0~3 μm;纵截面上MnS夹杂物具有很明显的拉长现象,且具有很好的熔断效果,宽度为1 μm左右,纵横比为3~6。国内钎具钢中夹杂物主要为单独的Mg Al O类夹杂物和Mg Al O外包裹(Ca,Mn)S类夹杂物,尺寸以3~6 μm为主;纵截面上,单独的(Ca,Mn)S沿轧制方向几乎不变形。热力学计算表明,MnS类夹杂物的两次析出是导致Mg Al O类夹杂物的包裹率达到70%、复合类夹杂物尺寸较小的主要原因。  相似文献   

14.
通过取样检测结合热力学计算,分析了钙处理对成品无取向硅钢中夹杂物特征及硫化物夹杂的析出机制的影响。结果表明,钢中尺寸大于3μm的有害夹杂物主要是AlN、MgO-SiO2、CaO-Al2O3-SiO2类复合夹杂物及其与MgS、MnS、CaS的复合析出物。钙处理钢中没有检测到单独的Al2O3、SiO2及铝酸钙类夹杂物。钙处理钢中形成的液态3CaO·Al2O3、MgO·SiO2和Al2O3夹杂物被精炼渣吸收,改性去除了钢中大尺寸Al2O3夹杂物。钙处理钢中尺寸大于3μm的氧化物夹杂主要是含CaO和(或)CaS的Al2O3-SiO2类夹杂。硫化物在MgO-SiO2类氧化物表面的析出有利于其形貌趋于规则。钢中不同形貌的AlN夹杂物呈多尺度分布,钙处理对大尺寸AlN的析出特性影响不大。氧硫化物及其与AlN复合析出并定向长大的过程,与其晶体结构有关。氧化物夹杂的硫容量决定了其与硫复合的难易程度。钙处理钢中CaS在氧化物表面呈局部包裹析出和局部吸附析出。  相似文献   

15.
钢中镁铝尖晶石夹杂物研究进展   总被引:1,自引:0,他引:1  
钢中MgAl2O4夹杂物熔点高不变形,对高级别钢种质量危害大,是近几年洁净钢领域研究的热点。本文阐述了MgAl2O4夹杂物产生的背景,总结了钢中MgAl2O4夹杂物研究的现状,提出需要对MgAl2O4夹杂物向低熔点四元复合氧化物夹杂转变的动力学做进一步研究。  相似文献   

16.
为了研究Fe-Mn-Al-C低密度钢脱氧合金化夹杂物的生成及机理,采用Si、Mn、Al进行脱氧合金化,通过场发射扫描电子显微镜结合夹杂物自动分析系统对Fe-Mn-Al-C低密度钢样品中的夹杂物进行观察。结果显示,Fe-Mn-Al-C低密度钢中夹杂物主要分为6类,即单颗粒Al2O3夹杂物、单颗粒MnS夹杂物、单颗粒AlN夹杂物、Al2O3-MnS复合夹杂物、AlN-MnS复合夹杂物、Al2O3-AlN-MnS复合夹杂物。单颗粒的Al2O3、MnS、AlN夹杂物的数量相对较多,夹杂物尺寸以小于5μm为主。热力学计算发现Al2O3在脱氧合金化时生成,AlN在固相分数为0.844时开始析出,而MnS在完全凝固后的固相钢中开始析出。不同夹杂物间的二维晶格错配度计算结果显示,MnS(110)/Al2O3(001)、AlN(001)/Al<...  相似文献   

17.
摘要:齿轮是机械传动的关键结构部件,为了改善齿轮的服役性能,提高疲劳寿命,需要清楚齿轮钢中的夹杂物类型、数量、尺寸、分布。采用夹杂物自动扫描仪、氧含量分析手段、扫描电镜对齿轮钢锻件不同位置进行夹杂物评估。结果表明:铸件中心位置TO质量分数较高,为10×10-6,对应小尺寸夹杂物数量较多,而大尺寸夹杂物在关键区域的分布较多。钢中氧化物夹杂主要为Al2O3、Al2O3复合类的尖晶石和钙铝酸盐复合夹杂物,且尺寸较大,分布不均匀,对齿轮钢关键区域的影响较大。钢中硫化物夹杂分布均匀,尺寸较小,热力学计算表明,该类夹杂在凝固过程中凝固率g>0.44时,MnS开始析出,通过控制硫化物夹杂析出及分布有助于改善齿轮钢质量。  相似文献   

18.
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-Al2O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势.   相似文献   

19.
 为了研究超低碳钢炼钢过程中夹杂物的具体演变规律,利用夹杂物自动分析系统研究了硫质量分数分别为0.010%和0.015%的两炉次(S100炉次和S150炉次)超低碳汽车外板烘烤硬化钢(bake hardening steel,简称BH钢)从RH终点到铸坯过程中夹杂物形貌、成分、数量、尺寸的演变,并利用X射线荧光光谱仪和X射线衍射仪结合RH精炼渣和中间包覆盖剂熔渣的成分进行对比分析。结果表明,BH钢中夹杂物的主要类型为Al2O3、MnS、Al2O3+MnS和含硅类夹杂物(其中含硅类夹杂物主要是Al Si O夹杂,不包括纯硅、SiC、SiO2)。由于BH钢中锰和硫质量分数较高,凝固过程中MnS大量析出,使得铸坯中MnS夹杂物数量密度和夹杂物总数量密度显著增加。硫质量分数为0.010%和0.015%的两炉次钢在RH和中间包中MnS夹杂物数量密度无明显差异,由于MnS主要在凝固过程中析出,S150炉次在铸坯中的MnS明显多于S100炉次。精炼渣中w((FeO+MnO))较高,w((CaO))/w((Al2O3))比低,会导致RH终点Al2O3夹杂物较多。在浇注过程中,引流砂的流入会导致中间包覆盖剂熔渣中SiO2质量分数增高,造成钢液中Si Al O等夹杂物的数量密度明显增加。结晶器过程中Al2O3夹杂不断聚集长大、上浮去除,使铸坯中Al2O3和Al2O3+MnS夹杂物数量密度减少,尺寸增大。  相似文献   

20.
研究了采用LD-LF-VD-CC工艺流程生产超低氧高速车轮钢时,精炼过程中夹杂物的生成与变化.实验在出钢时加入足够的Al进行终脱氧,LF精炼过程采用强脱氧、高碱度和强还原性精炼渣工艺,能使最终铸坯w(T.O)达到7×10-6,获得高洁净度的铸坯;而且在LF精炼过程中,夹杂物完成了Al2O3→MgO.Al2O3→CaO-MgO-Al2O3类复合夹杂物的转变,得到在炼钢温度下呈液态的复合氧化物夹杂,这些液态夹杂物通过碰撞、长大和上浮去除,残留于钢中的氧化物夹杂以较低熔点的CaO-MgO-Al2O3类复合夹杂形态存在,它们在热加工过程中可以发生稍许变形,能有效改善车轮钢的疲劳性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号