首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of wireless networks can be increased via dynamic load balancing/sharing by employing overlay networks on top of the existing cellular networks. One such recently proposed system is the integrated cellular and ad hoc relay (iCAR) system, where an overlay ad hoc network is employed to use the resources efficiently by dynamically balancing the load of the hot spots in the cellular network, and to provide quality-of-service to subscribers, no matter where they are located and when the request is made. It is assumed that this overlay network operates in the 2.4-GHz Industrial, Scientific, and Medical (ISM) band and, hence, the number of available ISM-band relay channels used for load balancing will be limited due to other users' interference at a given point in time. In this paper, the impact of ISM-band interference on the performance of iCAR systems, which is a representative hybrid wireless network, is studied, and it is shown that dynamic load balancing and sharing capabilities of iCAR systems are strictly dependent on the availability of the ISM-band relay channels. In addition to quantifying the impact of the number of available relay channels on the performance of iCAR systems, a simple channel assignment scheme to reduce the performance degradation due to other users' interference is also provided. Results show that this interference avoidance technique can improve the realistic performance of iCAR-like hybrid wireless networks by 12%-23% when the interferers are uniformly distributed in the ISM-band.  相似文献   

2.
In heterogeneous wireless network environment, wireless local area network (WLAN) is usually deployed within the coverage of a cellular network to provide users with the convenience of seamless roaming among heterogeneous wireless access networks. Vertical handoffs between the WLAN and the cellular network maybe occur frequently. As for the vertical handoff performance, there is a critical requirement for developing algorithms for connection management and optimal resource allocation for seamless mobility. In this paper, we develop a mathematical model for vertical handoff decision problem, and propose a multi-objective optimization immune algorithm-based vertical handoff decision scheme. The proposed scheme can enable a wireless access network not only to balance the overall load among all base stations and access points but also maximize the collective battery lifetime of mobile terminals. Results based on a detailed performance evaluation study are also presented here to demonstrate the efficacy of the proposed scheme.  相似文献   

3.
软件定义网络( SDN)为实现异构无线网络中的负载均衡提供了新的思路。设计了一种软件定义的无线网络负载均衡架构,并提出对应算法。首先,根据接收信号强度构建候选网络列表;其次,根据各候选网络的可用负载比率标准差进行负载差异分级;再次,将服务质量匹配度函数和负载均衡指数线性组合成联合优化函数,并根据负载差异分级对联合优化的权重进行动态调整,合理设置门限进行接纳控制。与传统算法相比,所提算法一方面可使各类业务阻塞率明显降低大约20%,另一方面使不同网络的归一化负载更加接近。该算法在进行网络负载均衡的同时,能够有效降低业务阻塞率,从而有效提升异构无线网络的整体性能。  相似文献   

4.
Resource management for QoS support in cellular/WLAN interworking   总被引:3,自引:0,他引:3  
To provide mobile users with seamless Internet access anywhere and anytime/ there is a strong demand for interworking mechanisms between cellular networks and wireless local area networks in the next-generation all-IP wireless networks. In this article we focus on resource management and call admission control for QoS support in cellular/WLAN interworking. In specific, a DiffServ interworking architecture with loose coupling is presented. Resource allocation in the interworking environment is investigated/ taking into account the network characteristics, vertical handoff, user mobility, and service types. An effective call admission control strategy with service differentiation is proposed for QoS provisioning and efficient resource utilization. Numerical results demonstrate the effectiveness of the proposed call admission control scheme.  相似文献   

5.
Maximizing network throughput while providing fairness is one of the key challenges in wireless LANs (WLANs). This goal is typically achieved when the load of access points (APs) is balanced. Recent studies on operational WLANs, however, have shown that AP load is often substantially uneven. To alleviate such imbalance of load, several load balancing schemes have been proposed. These schemes commonly require proprietary software or hardware at the user side for controlling the user-AP association. In this paper we present a new load balancing technique by controlling the size of WLAN cells (i.e., AP's coverage range), which is conceptually similar to cell breathing in cellular networks. The proposed scheme does not require any modification to the users neither the IEEE 802.11 standard. It only requires the ability of dynamically changing the transmission power of the AP beacon messages. We develop a set of polynomial time algorithms that find the optimal beacon power settings which minimize the load of the most congested AP. We also consider the problem of network-wide min-max load balancing. Simulation results show that the performance of the proposed method is comparable with or superior to the best existing association-based methods.  相似文献   

6.
As the wireless environment becomes ever more populated and complex, individual networks offering single or restricted services will become ever more uncompetitive. Common radio resource management algorithms and strategies are used in heterogeneous or converged wireless networks to integrate multiple physical radio interfaces to support different levels of data rates, mobility, and traffic. Admission control in a common RRM environment is used to select the most appropriate wireless access based on service type, user preference, and network load. This is used to provide a balance between real-time and non-real-time traffic across the available access technologies. The development of common radio resource management strategies requires a suitable platform of coupled access networks and is the motivation behind the development of a converged wireless test platform. The tightly coupled platform supports voice and data call setup and delivery over UMTS and WLAN  相似文献   

7.
A major challenge of the heterogeneous wireless networks is how to jointly utilize the resources of different radio access technologies in an efficient manner. In this paper, system performance, such as the block probability and throughput, was investigated in communication hot spots overlapped by heterogeneous networks: cellular, WLAN, and WiMax networks. Two cooperative load-balancing strategies based on hops-limited routing algorithm of ad hoc network are proposed in order to raise the resource utilization of the whole overlapping heterogeneous networks. They both firstly make a decision whether to admit a new call or not based on common radio resource management strategies, and in overloaded condition, select certain traffic to transfer into targeted BS/AP according to minimum price strategy or minimum load BS/AP and nearest traffic strategy, which take into account these factors such as load index, number of hops, traffic prediction, cost, etc. An analytical model is used to compute the call block probability and throughput performance for two different traffic models. Simulation results show that the proposed load-balancing strategies can distribute traffics to the whole heterogeneous wireless networks, decrease the call block probability, improve system throughputs efficiently, and obviously outperform HM-MACA and HS-TC load-balancing strategies.  相似文献   

8.
The rapid development of mobile broadband services with continuously increasing traffic volumes has resulted in a number of challenges, including ubiquitous network coverage, high bandwidth, and reliable services for reasonable price, etc. To address these challenges, evolved packet system (EPS) is proposed as the evolution of the packet core network. While resource management and load balancing issues in EPS are discussed in 3GPP standardization, relatively few research works consider mechanism design for load information monitoring and evaluation. Furthermore, even though some load balancing algorithms have been proposed for integrated networks, the load balancing scheme design which achieves the optimization of joint system performance has not been extensively studied. In this paper, an inter-access system anchor based load balancing mechanism is introduced which performs load monitoring and evaluation for access gateways and networks, and an optimal load balancing algorithm is proposed for heterogeneous integrated networks. To characterize the performance of integrated networks, the concept of utility function is introduced and the comprehensive performance of integrated networks which support both single type service and multimedia service is modeled mathematically. Applying vertical handoff as an efficient mechanism for achieving load balancing, the optimal number of handoff users is obtained through solving the optimization problem. Numerical results demonstrate that load balancing between access networks can be achieved, and the optimal number of handoff users corresponding to the maximal joint network utility can be obtained.  相似文献   

9.
无线蜂窝网络和无线局域网的融合能充分利用两者的互补能力,提供更加全面的无线服务。本文针对GPRS蜂窝网络和无线局域网现有融合技术中的不足,提出了一种新的基于移动IP技术的松耦合移动性管理方案,旨在减少切换时延、解决三角路由等问题,将有利于移动通信网络的升级和演进发展。  相似文献   

10.
This paper proposes efficient resource allocation techniques for a policy-based wireless/wireline interworking architecture, where quality of service (QoS) provisioning and resource allocation is driven by the service level agreement (SLA). For end-to-end IP QoS delivery, each wireless access domain can independently choose its internal resource management policies to guarantee the customer access SLA (CASLA), while the border-crossing traffic is served by a core network following policy rules to meet the transit domain SLA (TRSLA). Particularly, we propose an engineered priority resource sharing scheme for a voice/data integrated wireless domain, where the policy rules allow cellular-only access or cellular/WLAN interworked access. By such a resource sharing scheme, the CASLA for each service class is met with efficient resource utilization, and the interdomain TRSLA bandwidth requirement can be easily determined. In the transit domain, the traffic load fluctuation from upstream access domains is tackled by an inter-TRSLA resource sharing technique, where the spare capacity from underloaded TRSLAs can be exploited by the overloaded TRSLAs to improve resource utilization. Advantages of the inter-SLA resource sharing technique are that the core network service provider can freely design the policy rules that define underload and overload status, determine the bandwidth reservation, and distribute the spare resources among bandwidth borrowers, while all the policies are supported by a common set of resource allocation techniques.  相似文献   

11.
A high call blocking rate is a consequence of an inefficient utilization of system resources, which is often caused by a load imbalance in the network. Load imbalances are common in wireless networks with a large number of cellular users. This paper investigates a load-balancing scheme for mobile networks that optimizes cellular performance with constraints of physical resource limits and users quality of service demands. In order to efficiently utilize the system resources, an intelligent distributed antenna system (IDAS) fed by a multi base transceiver station (BTS) has the ability to distribute the system resources over a given geographic area. To enable load balancing among distributed antenna modules we dynamically allocate the remote antenna modules to the BTSs using an intelligent algorithm. A self-optimizing network for an IDAS is formulated as an integer based linear constrained optimization problem, which tries to balance the load among the BTSs. A discrete particle swarm optimization (DPSO) algorithm as an evolutionary algorithm is proposed to solve the optimization problem. The computational results of the DPSO algorithm demonstrate optimum performance for small-scale networks and near-optimum performance for large-scale networks. The DPSO algorithm is faster with marginally less complexity than an exhaustive search algorithm.  相似文献   

12.
Nowadays, public wireless local area networks (WLANs), commonly called hotspots, are being largely deployed by WISPs (Wireless Internet Service Providers) as a means of offering ubiquitous Internet access to their customers. Although a substantial number of solutions have been proposed to improve security, mobility and quality of service on the wireless area, access network management which is mandatory remains a very significant concern. This paper describes RSM‐WISP, a new management architecture designed for WISPs to facilitate the implementation and management of the services they offer at the access side of the WLAN, and to manage roaming contracts between WISPs. Our architecture is based upon the policy‐based management principles as introduced by the IETF, combined with more intelligence at the network edge. RSM‐WISP adopts an architecture that is composed of two elements: a WISP management center (MC) that deploys policies and monitors all the WLANs, and a programmable access router (CPE) located in each WLAN. The CPE ensures service enforcement, service differentiation (access to different service levels) and guarantee, user access management, and dynamic WLAN adaptation according to the user's SLA (service level agreement). It also permits automatic service updates according to the user's requirements. Concerning roaming management, this is achieved on the CPE through multiple service provider support capabilities. This approach provides WISPs with a simple, flexible and scalable solution that allows easy service deployment and management at the access. This management architecture has been implemented, tested and validated on the 6WINDGate routers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
It is commonly held that next generation mobile systems will be developed on the Internet in combination with diverse access technologies, as the future network architecture will be the coming together of various overlapping wireless access networks. Integrating various wireless networks in future heterogeneous networking environments poses many difficulties, the most critical challenge of which is efficient support for seamless mobility. SIP is a promising nominee for managing mobility in heterogeneous networks as it provides mobility within the application layer and the characteristics of the lower layer protocols are invisible to it. However, the performance of SIP-based mobility management is downgraded, resulting from its adoption of TCP/UDP for signaling and its strict separation between the lower layers and the application layer of the protocol stack. In this paper, a SIP-based cross-layer design for fast handoffs is proposed to shorten the service interruption time when a mobile node crosses the overlapped area of a WLAN/3G cellular system. As will be shown by the simulation results, the SIP-based solution proposed in this paper effectively lessens the handoff delays caused by either the horizontal handoff or vertical handoff in future all-IP heterogeneous wireless networks.  相似文献   

14.
Congested hot spots and node failures severely degrade the performance of wireless mesh networks. However, conventional routing schemes are inefficient in mitigation of the problems. Considering analogy to physics, we propose a novel distributed potential-field-based routing scheme for anycast wireless mesh networks, which is robust to sudden traffic and network perturbations, effectively balancing load among multiple gateways and mesh nodes with little control overhead. Simulation results exhibit autonomous load balancing and failure-tolerant performance in wireless mesh networking.  相似文献   

15.
A Flexible QoS-aware Service Gateway for Heterogeneous Wireless Networks   总被引:1,自引:0,他引:1  
The integration of different types of wireless access networks, or heterogeneous wireless networks (HWN), is emerging. This article investigates in particular how a combination of UMTS (Universal Mobile Telecommunications System) cellular networks, wireless LAN ad hoc networks, and DVB-H (digital video broadcasting - handheld) broadcasting networks, called UWD networks for short, is constructed and managed to provide users with QoS-aware services. Given the complexity of the UWD networks, a novel policy-based service gateway is proposed. As a software framework sitting over and communicating with the UWD network, this UWD service gateway makes network management decision by reasoning over a set of predefined policies that describe the behaviors of the UWD network. Network variables such as bandwidth, delay, and mobility in policies are fuzzified using fuzzy control theory to make the service gateway (as well as the whole UWD network) more flexible and robust. Both the prototype implementation and the evaluation results indicate the feasibility and effectiveness of the system  相似文献   

16.
Fourth generation (4G) wireless networks will provide high-bandwidth connectivity with quality-of-service (QoS) support to mobile users in a seamless manner. In such a scenario, a mobile user will be able to connect to different wireless access networks such as a wireless metropolitan area network (WMAN), a cellular network, and a wireless local area network (WLAN) simultaneously. We present a game-theoretic framework for radio resource management (that is, bandwidth allocation and admission control) in such a heterogeneous wireless access environment. First, a noncooperative game is used to obtain the bandwidth allocations to a service area from the different access networks available in that service area (on a long-term basis). The Nash equilibrium for this game gives the optimal allocation which maximizes the utilities of all the connections in the network (that is, in all of the service areas). Second, based on the obtained bandwidth allocation, to prioritize vertical and horizontal handoff connections over new connections, a bargaining game is formulated to obtain the capacity reservation thresholds so that the connection-level QoS requirements can be satisfied for the different types of connections (on a long-term basis). Third, we formulate a noncooperative game to obtain the amount of bandwidth allocated to an arriving connection (in a service area) by the different access networks (on a short-term basis). Based on the allocated bandwidth and the capacity reservation thresholds, an admission control is used to limit the number of ongoing connections so that the QoS performances are maintained at the target level for the different types of connections.  相似文献   

17.
In this paper, we study voice and data service provisioning in an integrated system of cellular and wireless local area networks (WLANs). With the ubiquitous coverage of the cellular network and the disjoint deployment of WLANs in hot-spot areas, the integrated system has a two-tier overlaying structure. As an essential resource allocation aspect, admission control can be used to properly admit voice and data calls to the overlaying cells and WLANs. A simple admission scheme is proposed in this study to analyze the dependence of resource utilization and the impact of user mobility and traffic characteristics on admission parameters. Both admission control and rate control are considered to limit the input traffic to the WLAN, so that the WLAN operates in its most efficient states and effectively complements the cellular network. The call blocking/dropping probabilities and data call throughput are evaluated for effective and accurate derivation of the admission parameters. It is observed that the utilization varies with the configuration of admission parameters, which properly distributes the voice and data traffic load to the cells and WLANs. Mobility and traffic variability have a significant impact on the selection of the admission parameters.  相似文献   

18.
The integration of wireless local area network (WLAN) hotspot and the 3G cellular networks is imminently the future mode of public access networks. One of the key elements for the successful integration is vertical handoff between the two heterogeneous networks. Service disruption may occur during the vertical handoff because of the IP layer handoff activities, such as registration, binding update, routing table update, etc. In this paper, the network interface switching and registration process are proposed for the integrated WLAN/cellular network. Two types of fast vertical handoff protocols based on bicasting and non‐bicasting supporting real‐time traffic, such as voice over IP, are modeled. The performance of a bicasting based handoff scheme is analyzed and compared with that of fast handoff without bicasting. Numerical results and the simulation are given to show that packet loss rate can be reduced by the bicasting during handoff scheme without increasing bandwidth on both wireless interfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Wireless LAN access network architecture for mobile operators   总被引:16,自引:0,他引:16  
The evolution of IP-based office applications has created a strong demand for public wireless broadband access technology offering capacity far beyond current cellular systems. Wireless LAN access technology provides a perfect broadband complement for the operators' existing GSM and GPRS services in an indoor environment. Most commercial public wireless LAN solutions have only modest authentication and roaming capability compared to traditional cellular networks. This article describes a new wireless LAN system architecture that combines the WLAN radio access technology with mobile operators' SIM-based subscriber management functions and roaming infrastructure. In the defined system the WLAN access is authenticated and charged using GSM SIM. This solution supports roaming between cellular and WLAN access networks and is the first step toward an all-IP network architecture. The proto-type has been implemented and publicly verified in a real mobile operator network  相似文献   

20.
Integration of 3G and wireless LAN (WLAN) becomes a trend in current and future wireless networks, and brings many benefits to both end users and service providers. In this paper, we provide a comprehensive survey on integration of 3G and WLAN. We discuss issues such as underline network architectures, integrated architectures, mobility management, and quality of service (QoS). We particularly study handoff QoS mapping and guarantee between 3G and WLAN, as well as how seamless voice/multimedia/data handoff becomes possible. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号