首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The oxidation behavior of Co-based Tribaloy T-800 alloy has been studied isothermally in air at 800 and 1,000 °C, respectively. The results showed that the oxidation mechanism was dependent on the exposure temperature. The oxidation of the alloy followed subparabolic oxidation kinetics at 800 °C. The oxide scale at this temperature exhibited a multi-layered structure including an outer layer of Co oxide, a layer composed of complex oxide and spinel, a nonuniform Mo-rich oxide layer, an intermediate mixed oxides layer and an internal attacked layer with different protrusions into Laves phase. During 1,000 °C exposure, it followed linear kinetics. The oxidation rendered a relatively uniform external Cr-rich oxide layer coupled with a thin layer of spinel on the top surface and voids at local scale/alloy interface and intergranular region together with internal Si oxide at 1,000 °C.  相似文献   

2.
A sputtered coating of a low-Cr alloy without Si was deposited on the cast alloy with the same composition. The short term (100 h) oxidation behavior of the sputtered coating and the cast alloy was evaluated in air at 800 °C. The results indicated that the sputtered coating exhibited a higher oxidation resistance than the cast alloy. It was found that the mass gain of the cast alloy increased continuously with oxidation time and was higher than that of the sputtered coating, which demonstrated only a slight increase in mass gain with oxidation time after 5 h thermal exposure. During the initial thermal exposure of 0.5 h, the oxide scale formed on the cast alloy consisted of Fe2O3 and (Fe,Co,Cr)3O4 spinel with a small amount of Cr. However, (Fe,Co,Cr)3O4 spinel and Fe2O3 were thermally grown on the sputtered coating. After oxidation for 100 h, the oxide scale formed on the cast alloy consisted of Co3O4 and (Fe,Co)3O4 with internal oxide of Cr, while a double-layer oxide consisting of an outer (Fe,Co,Cr)3O4 spinel layer and an inner Cr2O3 layer was developed on the sputtered coating.  相似文献   

3.
The high temperature oxidation behavior of alloy 617 and Haynes 230 have been investigated for VHTR intermediate heat exchanger applications. Oxidation tests were carried out for up to 500 h at 900 °C and 1000 °C in impure helium environments containing H2, H2O, CO, CO2, and CH4. The oxidation kinetics of the alloys followed a parabolic rate law in all cases. In the impure helium environments with very low oxygen, the external oxides of alloy 617 were composed of a Cr2O3 layer, TiO2 ridges on the grain boundaries, and isolated MnCr2O4 grains on top of the Cr2O3 layer. On the other hand, those of Haynes 230 consisted of a Cr2O3 inner layer and a protective MnCr2O4 outer layer, which increased the oxidation resistance. The effect of small amounts of CH4 and H2 on the oxidation kinetics of the alloys was insignificant. Irregular oxide morphology, such as cellular Cr2O3 oxides for alloy 617 and MnCr2O4 platelets for Haynes 230, was formed in the impure helium environment at 900 °C. For Haynes 230, along with platelets, whiskers were frequently found at the tip of the MnCr2O4 oxide crystals.  相似文献   

4.
Plasma electrolytic oxidation (PEO) of AZ91 Mg alloys was performed in ZrO2 nanoparticles containing Na2SiO3-based electrolytes. The phase composition and the microstructure of PEO coatings were analyzed by x-ray diffraction and scanning electron microscopy followed by energy dispersive spectroscopy. Pitting corrosion properties of the coatings were investigated using cyclic polarization and electrochemical impedance spectroscopy tests in a Ringer solution. The results showed the better pitting corrosion resistance of the composite coating, as compared to the oxide one, due to the thickened inner layer and the decrease in the surface defects of the composite coating. Also, the PEO process decreased the corrosion current density from 25.06 µA/cm2 in the Mg alloy to 2.7 µA/cm2 in the oxide coating and 0.47 µA/cm2 in the composite coating.  相似文献   

5.
A novel TiAl3-Al coating was prepared by cold spray for high temperature protection of titanium aluminum-based alloy. The substrate alloy was orthorhombic-Ti-22Al-26Nb (at.%). The composite coating was mainly composed of TiAl3 embedded in the matrix of residual aluminum. An interlayer about 10 μm was formed between the coating and the substrate. The oxidation test indicated that this composite coating was very effective in improving the high-temperature oxidation resistance of the substrate alloy at 950 °C in the tested 150 cycles without any sign of degradation. The microstructure analysis of the oxidized composite coating showed that an Al2O3 scale with a complex structure can be formed outside the interlayer during oxidation and no oxides beneath the interlayer were detected, which indicated that the complex continuous Al2O3 and the interlayer provide the protection of the substrate at high-temperature oxidation condition.  相似文献   

6.
In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A ~ 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.  相似文献   

7.
In this work, ZrB2-20 vol.% MoSi2 (denoted as ZM) composite coatings were fabricated by atmospheric plasma spray (APS) and vacuum plasma spray (VPS) techniques, respectively. Phase composition and microstructure of the composite coatings were characterized. Their oxidation behaviors and microstructure changes at 1500 °C were comparatively investigated. The results showed that VPS-ZM coating was composed of hexagonal ZrB2, tetragonal and hexagonal MoSi2, while certain amount of ZrO2 existed in APS-ZM coating. The oxide content, surface roughness and porosity of VPS-ZM coating were apparently lower than those of APS-ZM coating. The mass gain of APS-ZM coating was maximum at the beginning (1500 °C, 0 h) and then decreased with the oxidation time extending, while the mass of VPS-ZM coating gradually increased with increasing the oxidation time. The possible reasons for the different oxidation behaviors of the two kinds of coatings were analyzed.  相似文献   

8.
FeCrAl-base alloys are well known for their excellent oxidation resistance due to formation of a slowly growing alumina surface scale during high-temperature service. The actual scale growth mechanism and especially adherence are strongly affected by the presence of oxygen-active elements such as yttrium, titanium or hafnium. In the present study, the effect of titanium addition on the scale growth mechanisms of an yttrium oxide dispersion-strengthened FeCrAl base alloy was studied during oxidation at 1200 °C in Ar–O2. For microstructural characterization results of scanning electron microscopy and electron backscatter diffraction were combined with X-ray diffraction data. Scale growth mechanisms were investigated by two-stage oxidation using 18O tracer with subsequent scale analyses using secondary neutrals mass spectrometry. The scale on the alloy without intentionally added titanium grew virtually exclusively by oxygen diffusion along oxide grain boundaries and exhibited a columnar structure with the grain size increasing in growth direction. The addition of titanium resulted in formation of an outer oxide zone of equiaxed grains on top of the inner columnar part. The equiaxed grains increased in size with increasing exposure time. Comparison with the tracer studies revealed that the titanium-induced equiaxed zone was the result of outer scale growth. Mechanisms for the initiation of outward aluminium transport are discussed. Indications were found that the effect of titanium on the scale growth mechanisms already occurred for titanium additions as low as 0.02 wt%.  相似文献   

9.
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.  相似文献   

10.
In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.  相似文献   

11.
Ceria coatings having a well-defined cracks network were electrodeposited onto Ni-based René N5 superalloys. After a subsequent annealing under argon for promoting the formation of a stable alpha alumina scale at the ceria layer/substrate interface, the samples were isothermally oxidized at 1,100 °C for 50 h to thicken the oxide scale. They were then subjected to cyclic oxidation at 1,100 °C for 1-h cycles. 10 μL water drops were put down onto the surface of the samples during the cold stages to study the influence of water onto the mechanical integrity of the pre-oxidized system. The multi-cracked ceria microstructure exhibited a widening of the cracks as well as refinement of the oxide grains. However, no spallation was observed and the composition remained stable for both ceria and alumina. It was demonstrated that the crystallization of ceria into the CeO2 fluorite structure conferred to the coating chemical inertness towards water.  相似文献   

12.
Disk alloys used in advanced gas turbine engines often contain significant amounts of Mo (2 wt% or greater), which is known to cause corrosion under Type I hot corrosion conditions (at temperatures around 900 °C) due to alloy-induced acidic fluxing. The corrosion resistance of several model and commercial Ni-based disk alloys with different amounts of Mo with and without Na2SO4 deposit was examined at 700 °C in air and in SO2-containing atmospheres. When coated with Na2SO4 those alloys with 2 wt% or more Mo showed degradation products similar to those observed previously in Mo-containing alloys, which undergo alloy-induced acidic fluxing Type I hot corrosion even though the temperatures used in the present study were in the Type II hot corrosion range. Extensive degradation was observed even after exposure in air. The reason for the observed degradation is the formation of sodium molybdate. Transient molybdenum oxide reacts with the sodium sulfate deposit to form sodium molybdate which is molten at the temperature of study, i.e., 700 °C, and results in a highly acidic melt at the salt alloy interface. This provides a negative solubility gradient for the oxides of the alloying elements, which results in continuous fluxing of otherwise protective oxides.  相似文献   

13.
Magnesium alloys are very important for lightweight applications. Industrially, these alloys cannot be used without some necessary processing to improve their corrosion properties. The most widely used methods include coating, surface treatments and cladding. In these processes, the magnesium oxide scale plays an important role in the bonding mechanism between the substrate and the coating or the cladding materials. The aim of this study is to understand the spontaneous oxide formation and the initial oxidation kinetics of the TRC AZ31 magnesium alloy. The results are important for the understanding of the subsequent surface treatment processes of that alloy. Therefore, the study comprises: first, the analysis of the native oxide which forms spontaneously after Twin Roll Casting of an AZ31 magnesium sheet, and second, the investigation of the oxidation behavior of the AZ31 magnesium alloy heated in air at 300 °C with different exposure times ranging from 1 to 180 min. The results showed that the thickness of the native oxide is 5 nm and the oxide surface mainly comprises of magnesium, oxygen, and carbon compounds. The oxide film contains magnesium oxide in the form of MgO as the main oxide compound with a very thin layer of MgCO3 and Mg(OH)2. The X-ray photoelectron spectroscopy results revealed two stages of oxidation kinetics during exposure to 300 °C. Rapid growth represents the first stage, which lasts for about 30 min. After that period, the oxide growth slowed, indicating a steady state character, where the oxide film growth approaches a limit value. This slow growth is due to the lack of diffusion of oxygen into a dense oxide layer possessing a low concentration of defects. The oxidation kinetics follows an inverse logarithmic law.  相似文献   

14.
This article presents Ni–Cu–Fe–Al alloy as a novel inert anode used in FFC process (the Fray Farthing Chen) in molten calcium chloride salts for producing titanium. The alloy was prepared by vacuum induction melting; then utilized as anode material in molten CaCl2 for 16 h at 900 °C. Morphology and the corrosion behavior of the samples were analyzed using scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The product on the cathode was analyzed using X-ray diffraction (XRD). After 16 h electrolysis of anodes, EDS and SEM analysis of the samples showed that the corrosion depth of the non-oxidized sample was shorter. Corrosion attacks more severe for the pre-oxidized sample than the non-oxidized sample, which indicated that the corrosion resistance of outer layer is higher on the non-oxidized sample. The XRD results show that the TiO2 pellets were successfully reduced to the lower oxides using the Ni–Cu–Fe–Al inert anode.  相似文献   

15.
Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.  相似文献   

16.
In the present investigation, a color change on the surface of Ti-5Al-5Mo-5V-1Cr-1Fe alloy was studied through thermal oxidation experiments in the temperature range of 100-1000 °C with an interval of 50 °C. The phase composition and morphology of oxide layer were characterized by x-ray diffraction and light optical microscopy, respectively. The result shows that the achieved colors after thermal oxidation followed a chromatic scale which went from silver white to light yellow to golden yellow to blue and then to light green and brownish black. The color change on the alloy mainly resulted from the different colored titanium oxides in the oxide layer. The silver white, yellow, and blue on the alloy with the oxidation temperature below 600 °C were the results of TiO2 white tint, TiO golden tint, and Ti2O3 blue color, respectively. The light green was the mixed color of TiO golden tint and Ti2O3 blue color in the oxidation temperature range of 600-700 °C. However, at the oxidation temperatures exceeding 750 °C, the color turned to be brownish black. It might be associated with the thick, porous, and multilayered oxide layer. Consequently, it can be suggested that the illustration of the color change is vitally necessary for assessing the quality of the final workpieces according to the color change on titanium alloys.  相似文献   

17.
Hot-dip aluminizing method and subsequent interdiffusion treatment were used to develop a TiAl3 coating on Ti–45Al–2Cr–2Nb–0.15B (at.%) alloy. A two-phase coating consisting of an outer pure Al layer and an inner TiAl3 layer formed on the alloy after the hot-dip and then a single phase TiAl3 coating was obtained by using interdiffusion treatment. Oxidation of the TiAl3 coating was conducted at 900 and 1000 °C. Both the interrupt oxidation and the isothermal oxidation tests indicated that the coating provided high protectiveness for the alloy. The coating was stable for at least 300 h during the interrupt oxidation at 900 and 1000 °C, and it was stable for at least 500 h at 1000 °C and 1000 h at 900 °C during the isothermal oxidation. The oxidation behavior of the coating was discussed in detail.  相似文献   

18.
To investigate the mechanisms by which Y and La dopants affect the oxidation behavior of Ni-base single‐crystal superalloys, the oxide scales formed on two variants of a commercial X4 alloy, each with and without a MCrAlYHfSi coating were characterized. The alloy systems were oxidized for 100 h at 1100 °C and then examined using analytical transmission electron microscopy. Without a coating, a duplex scale was formed on the superalloy surface comprised of an outer Ni‐rich spinel‐type layer and an inner columnar α‐Al2O3 layer. In this case, Hf and Ti were found segregated to the alumina grain boundaries in the outer part of the scale on both alloys but only Hf was detected near the metal–alumina interface. There was no evidence of Ta, Y or La segregation to the alumina scale grain boundaries after this exposure. The scale formed on the alloys with the thermally sprayed coating was primarily alumina, and Y and Hf segregated to the alumina grain boundaries for both alloys. There was evidence of Ti-rich oxides in the outer part of the scale indicating that Ti had diffused through the coating into the thermally grown oxide but La was not found.  相似文献   

19.
The oxidation and corrosion behavior of three model alloys with different cobalt contents (6–20 wt%) were investigated in static air and a simulated coal ash/gas environment at 750 °C. The model alloys follow a parabolic law approximately during the oxidation in static air. High cobalt level improves the oxidation resistance, however, without noticeable improvement in coal ash/gas corrosion resistance. The sample with the highest cobalt content grows the thinnest oxide layer and the fewest internal oxidation products in the oxidation test. Cobalt in the model alloys promotes the establishment of a protective chromium oxide scale during the oxidation test, but did not show much difference in restraining the inward diffusion of sulfur by increasing its content. The oxidation and corrosion products formed on the sample surface consist mainly of a protective chromium oxide film. Internal aluminum oxide particles have been found especially along the grain boundaries of the base alloy.  相似文献   

20.
The oxidation behavior of ZrB2–SiC composites with different contents of SiC addition was investigated at 1273 and 1473 K in air for 12 h in this study. The SiC addition contents ranged from 0 to 30 wt%. The results showed that when ZrB2–SiC composites were oxidized at 1273 K in air, a two-oxide layer-structure forms: a continuous glassy layer and a ZrO2 layer contained unoxidized SiC. When SiC content is 5 and 10 wt%, the glassy layer is mainly composed by B2O3. When SiC content is 20 and 30 wt%, a borosilicate glass could be formed on the top layer, which could improve the oxidation resistance of ZrB2. When ZrB2–SiC composites were oxidized at 1473 K in air, the oxide layer was composed of ZrO2 and SiO2 and unreacted SiC. Additionally, when SiC addition content was higher than 10 wt%, a continuous borosilicate glass layer could be formed on the top of the oxide layer at 1473 K. With the increase of SiC content in ZrB2, the oxide layer thickness decreased at both 1273 and 1473 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号