首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A portable device for calibration of trace humidity sensors and an adopted calibration procedure have been developed. The calibration device is based on humidity generation by permeating water through polymeric membrane tubes. Water vapour transmission rates for various polymers were experimentally determined in order to select the most suitable polymeric material. The developed trace humidity generator consists of a gas-flow polymeric hose immersed in a water reservoir thermostated by a sensor-controlled heater. Mole fractions of water vapour between 1 μmol mol−1 and 350 μmol mol−1 (equivalent to frost-point temperatures from −76 °C to −31 °C) were generated by varying either the operating temperature or gas flow. The operating temperature can be varied from 20 °C to 60 °C and kept stable within 0.1 K. Uncertainty analysis indicated that the trace humidity generator produces gas flows of constant humidity amounts with a relative expanded uncertainty less than 3.4% (k = 2) of the generated value.  相似文献   

2.
For expected applications of fast tool servo (FTS) and vibration machining, a 3-axis positioning device with low interference motions is proposed in this paper. The positioning device was composed of a XY stage and a Z-axis stage, which were actuated by piezoelectric (PZT) actuators combined with specially-designed symmetric flexure hinges. Through fundamental experiments, when the applied voltage was 50 V, the displacements along the X-, Y-, and Z-axes were measured as 6.35 μm, 6.61 μm, and 10.12 μm, respectively, with the corresponding small percentages of interference displacement of 3.80%, 4.02%, and 3.30%. In addition, the resonant frequencies were obtained as 1.06 kHz, 0.65 kHz, and 0.54 kHz. To examine control performances, a real-time control system considering hysteresis effect of PZT actuators was implemented by the field-programmable gate array (FPGA) modules to conduct tracing controls for sinusoidal waveform, 3D Lissajous motion, and 3D spiral motion. The tracing errors along 3-axis actuations were under 30 nm. The performances of a 3-axis positioning device were well demonstrated. Future work is to perform machining examinations on a machine tool.  相似文献   

3.
A temperature controlled 1 Ω and 10 kΩ transportable setup was developed at National Institute of Metrological Research (INRIM) for the calibration and adjustment of multifunction electrical instruments as digital multimeters (DMMs) and multifunction calibrators (MFCs). The two standards are made of two 10 Ω and 100 kΩ resistor nets connected in parallel and inserted in a temperature controlled aluminum structure. Novelties of the realization are the oil insertion of the 1 Ω net with the internal side of the connectors lowering the thermo-electromotive forces (EMFs) effects, and the possibility to know instantly the temperatures of the environment, of the internal of the structure and the last calibration values of the 1 Ω and10 kΩ standards. Short- and mid-term stabilities of the setup standards resulted on the order and in some cases better than other metrology-grade 1 Ω and 10 kΩ commercial items. The transport of the setup even turning off its temperature control did not cause appreciable measurement variations on the two standards. The standards uncertainties meet those requested by DMMs and MFCs manufacturers to calibrate and adjust these instruments. A test to adjust a MFC gave satisfactory results.  相似文献   

4.
High frequency RFID sensors are attractive in diverse applications where sensor performance is required at a low cost and dimension restriction. An approach adapting commercial passive 13.56 MHz RFID tags has been developed for sensing corrosion stage. This investigation includes balance of sensing and positioning of RFID sensors for corrosion detection by analysing real and imaginary parts of the complex impedance. With passive HF RFID sensors, real part and imaginary part of complex impedance have been extracted from the reader coil with VNA (vector network analyser) and delivering a unique capability for corrosion sensing with different atmospheric exposure time steel samples (1 month, 6 months, 10 months and 12 months). With different positioning (5–25 mm), features extraction based on the complex impedance with PCA (principal component analysis) has been designed for position-independent corrosion evaluation.  相似文献   

5.
We propose a non-contact temperature measurement method that combines the temperature dependence of transmittance below 600 °C and radiation thermometry above 600 °C. The combined method uses a polarization technique and the Brewster angle between air and a dielectric film such as SiO2 or Si3N4 grown on silicon wafers. A prominent feature of this method is that both measurements of transmittance and radiance are performed with the same geometrical arrangement.For a semitransparent wafer, the measurement of p-polarized transmittance at the wavelengths of 1.1, 1.2 and 1.3 μm enables temperature measurement in the range from room temperature to 600 °C. For an opaque wafer above 600 °C, the p-polarized radiation thermometry at the wavelength of 4.5 μm allows the temperature measurement without the emissivity problem. The combined method with the use of transmittance and radiance is valid in the entire temperature range irrespective of variations of film thickness and resistivity.  相似文献   

6.
A motorized 5 m tape comparator was constructed in TUBITAK UME for calibration of tapes and rules up to 5 m length in one set-up and further lengths in multiple set-ups. The system is a practical development and provides a cost effective solution for calibration of tapes in which the highest grade’s accuracy requirement in OIML R35-1 e.g. is 600 μm for 5 m length and 1100 μm for 10 m length. It is mainly composed of 6 m rail system, mechanical parts, optical units and an integrated 6 m incremental linear encoder as a reference measurement axis for traceable measurements. The rails are kinematically located on a heavy marble construction and a motorized carriage, which employs a camera for probing of the scales on the tapes, is moved along the rails during the measurement. The image of the scale taken by the camera is viewed on the monitor screen together with the running software. The operator can perform the probing process by simply moving the carriage over the measured scales (tapes or rules) using a joystick. The carriage movement is measured by the incremental linear encoder previously calibrated by a laser interferometer and the software automatically takes the measurement results from the incremental linear encoder, applies correction values previously defined and determines the length of the tapes and rules as well as deviations from nominal lengths. The estimated expanded uncertainty of the steel tape measurement is U = 54 μm in one set-up (for 5 m length) and U = 77 μm in two set-ups (for 10 m length) at the confidence level of approximately 95%. Uncertainty budget for calibration of the device itself and for calibration of the test tapes are explained in detail. The results of extensive experimental work and analysis are provided by demonstrating application of science and technology of measurement and instrumentation. Investigations for long term stability of the system are given with the reported test results for the years of 2003-2011 and participated intercomparison results to validate the device scientifically are illustrated.  相似文献   

7.
This work presents the design of a MEMS accelerometer that is specifically intended for Structural Health Monitoring (SHM) applications where sensing low frequency low amplitude accelerations with high resolution is essential. The surface micromachined comb drive capacitance accelerometer structure has been considered in this design. The simulation experiments conducted on these devices using IntelliSuite MEMS design tool show that it has excellent displacement sensitivity of 21.39 μm/g, a capacitive sensitivity of 1.22 pF/g and voltage sensitivity of 1783 mV/g/V when it is designed to measure 0–0.1 g. Further, it is seen that it has a very low noise floor of 1.32 μg/√Hz and therefore high resolution. Since the accelerations can be as low as 0.04 g in SHM applications, excellent resolution is the primary goal in this design. Further, one more sensor specifically meant for strong motion seismic application has also been reported. This device has a bandwidth of 0–250 Hz and a noise floor of 5.612 μg/√Hz in addition to a sensor level voltage sensitivity of 97.9 mV/g/V. Finally, the comparison of these results with other similar devices reported in the past clearly illustrates the comparable performance of the present devices. Further, these devices, unlike the commercial low frequency accelerometers and other similar devices reported in the past can be fabricated by surface micromachining and CMOS compatible processes.  相似文献   

8.
Impedance plethysmography, also known as the impedance test, the blood flow test, or impedance phlebography, is a non-invasive test that measures blood flow in the vessels of the peripheral vascular system by monitoring changes in electrical resistance (impedance) to detect deep thrombosis (blood clots or thrombophlebitis).The aim of our study was to use this technique for assessing changes in blood flow in the lower limbs in healthy subjects wearing protective footwear while walking.The test was performed on a group of 30 professional firefighters (age 30.7 ± 4.5, BMI 25.1 ± 3). Blood flow was monitored in the peripheral vascular system of the lower limbs during walking on a treadmill. The testing protocol consisted of the following three phases: warm-up, exercise, and rest.In order to identify differences between the three phases of the study, analysis of variance (ANOVA) with repeated measures was conducted. The statistically significant parameters of blood flow in the lower limbs were the impedance ratio (IR) (p < 0.001), slope ratio (SR) (p < 0.001), crest width (CW) (p < 0.001), and alternative blood flow (ABF) (p < 0.001). All of them showed an upward trend.The study confirmed the validity of impedance plethysmography as a non-invasive technique for measuring blood flow changes in the lower limbs in healthy subjects, especially under non-steady-state conditions, such as walking. This technique provides valuable quantitative data.Therefore, impedance plethysmography may be considered a reliable research method enabling evaluation of local blood flow in healthy subjects under different conditions.  相似文献   

9.
We describe a flow standard for gas flows in the range from 0.01 sccm to 100 sccm with a relative standard uncertainty (68% confidence) of 0.03% at 1 sccm (1 sccm≡1 cm3/min of an ideal gas at 101325 Pa and 0 °C ≈ 0.74358 μmol/s). The flow standard calibrates a secondary meter by withdrawing a piston from a cylinder held at constant pressure P while gas flows from the secondary meter into the cylinder. The flow standard can operate anywhere in the range 10 kPa<P<300 kPa, and it can act as a flow source as well as a flow receiver. The flow standard incorporated features that improved its convenience and lowered its cost without sacrificing accuracy, specifically (1) dry sliding seals made with commercially available, easily replaced, o-rings, (2) a compact design based on a commercially available, hollow piston, and (3) a linear encoder with a small Abbe error.  相似文献   

10.
The frictional response of a multi-component phenolic-based friction material is highly complex under a set of variable loads and speeds. The present paper discusses the sensitivity of friction coefficient (μ) of friction composites containing synthetic graphite with different particle sizes (with similar crystallinity range) to braking pressure and sliding speed. The friction studies were carried out on a sub scale brake-test-rig, following 4 loads × 3 speeds experimental design. The best combination of performance properties was observed for the composite containing synthetic graphite with an average particle size of 410 μm. Other particle sizes which resulted in good performance were 38 and 169 μm. Very fine particle sizes were not beneficial for desired combination of performance properties. Regression analysis of μ following an orthogonal L9(3 × 3) experimental design method revealed that the first order influences of sliding speed and braking pressure were significant. When all the combinatorial influences of braking pressure and sliding speed are taken into account together their simultaneous effects would be most effective in the range of graphite particle size ~80–250 μm.  相似文献   

11.
Stress free polishing method is preferred for a damage free surface of copper with ultra-flatness and ultra-smoothness. Such a surface offers a perfect substrate for integrated circuits and micro-electromechanical systems fabrication. A new polishing method, called electrogenerated chemical polishing (EGCP), is proposed based on the principle of the scanning electrochemical microscope (SECM) and the diffusion controlled chemical reaction. Roughness of a Cu surface is reduced from 100.5 nm to 3.6 nm by the proposed method. To demonstrate the planarization capability of this new method, a patterned Cu surface with an array of micro-columns is planarized with a peak-valley (PV) value from 4.7 μm to 0.059 μm.  相似文献   

12.
《Wear》2004,256(7-8):774-786
The present work reports the effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Five different grades of weld hardfacing cast irons were selected for the present investigation. The solid particle erosion experiments were carried out with blast furnace sinter, silica sand and alumina particles under mild (53–75 μm, 25 m s−1), moderately severe (125–150 μm/100–150 μm, 50 m s−1) and under severe erosion conditions (300–425 μm, 90 m s−1) at impingement angles of 30 and 90°. The variation in erosion rate with carbide volume fraction was observed to be strong function of the erodent particle hardness, impingement angle and the impact velocity. Under mild erosion conditions, erosion rate decreased with increasing carbide volume fraction (CVF), whereas erosion rate increased with CVF under moderately severe erosion condition with alumina particles. With silica sand particles under moderately severe erosion conditions the beneficial effect of large volume fraction of carbides could only be observed at 30°, whereas at normal impact erosion rate increased with increasing CVF. The erosion rate showed power law relationship with ratio of hardness of erodent particle to that of the target material (He/Ht) and expressed as E=c(He/Ht)p.With increasing severity of erosion conditions erosion rate showed stronger dependence on He/Ht as compared to those under mild and moderately severe erosion conditions. The mechanism of materials removal from the carbides involved Hertzian fracture with softer sinter particles, whereas harder alumina particles could plastically indent and cause gross fracture of the carbides.  相似文献   

13.
T. Hermann  T.A. Blanchet  N.F. Panayotou 《Wear》2010,268(1-2):126-132
Self-mated wear and friction of Alloy 600 superalloy was studied in a water-submersed ring-on-rod configuration, loading the side of a 6.35 mm diameter rod across the flat surface of a rotating annular ring of 100 mm outer diameter and 70 mm inner diameter producing two sliding contacts along the ring. Tests were conducted at sliding speeds of 0.178 and 0.330 m/s for sliding distances of 100 m. Normal loads of 51 and 204 N were applied, and initial Ra surface roughnesses of the rings along the sliding direction were either smooth (~0.2 μm) or rough (~7.5 μm). Increased initial ring roughness caused a ~20-fold increase in rod wear at the lighter load, whereas at the heavier load increased initial roughness only caused a ~4-fold increase in wear. At lower initial ring roughness the 4-fold decrease in normal load caused a large (one order-of-magnitude) decrease in rod wear, whereas for rings of higher initial roughness the 4-fold decrease in normal load caused only minor (2-fold or less) decreases in rod wear. Wear during this 100 m sliding distance only experienced a minor effect from the 1.8-fold change in sliding speed, as did friction. In all cases friction coefficient rapidly settled into the range 0.6–0.7, except in the cases of lower load on rings of lower initial roughness where friction coefficient remained above 1 for most of this sliding duration. At this lower load the initial ~0.2 μm rod roughnesses increased to nearly 0.8 μm by the 100 m sliding distance, whereas at the higher load this same sliding distance resulted in roughnesses returning near to the initial 0.2 μm. It was hypothesized more highly loaded cases also went through initial roughening prior to smoothening back to 0.2 μm roughness within the 100 m sliding distance, and given additional sliding the more lightly loaded cases would also experience subsequent smoothening. Increasing sliding distance to 400 m, roughnesses indicated a smoothening back to 0.2 μm level during those lightly loaded tests, with friction coefficient correspondingly dropping from 1 into the 0.6–0.7 range observed in all other cases. Extended sliding to 400 m at light loading against rings of lower initial roughness also allowed a rod wear rate which increased with increased sliding distance to be observed, approaching the same rate observed against initially rough rings within the 100 m sliding distance.  相似文献   

14.
Composite solid electrolytes (1  x) Na2SO4–(x) V2O5 were prepared and characterized by various techniques such as XRD, FT-IR, DTA and SEM. AC impedance spectroscopy revealed that the contribution of grain is strong enough over the grain boundary. Arrhenius plot of the Na2SO4 shows a sharp increase in conductivity at 523 K due to the structural phase transition (phase V  I). Composites show the enhanced ionic conductivity than the pristine Na2SO4 over the entire temperature range. The maximum conductivity σ = 0.003 S cm−1 at 773 K with the lowest activation energy of 0.28 eV was observed for the x = 0.4 sample. The enhanced value of dielectric constant and dielectric loss in the case of composites was obtained because of increase of conductivity, resulted from the increase of space charge polarization and charge motion.  相似文献   

15.
This paper presents the statistical analysis applied into the shape of microlenses (MLs) for validating the high-reproducibility feature of their fabrication process. The MLs were fabricated with the AZ4562 photoresist, using photolithography and thermal reflow processes. Two types of MLs arrays were produced for statistical analysis purposes: the first with a cross-sectional diameter of 24 μm and the second with a cross-sectional diameter of 30 μm, and both with 5 μm spacing between MLs. In the case of 24 μm diameter arrays, the measurements showed a mean difference in diameter of 2.78 μm with a standard deviation (SD) of 0.22 μm (e.g., 2.78 ± 0.22 μm of SD) before the reflow, and 2.34 ± 0.35 μm of SD after the reflow. For the same arrays, the mean difference in height obtained was, comparatively to the 5.06 μm expected, 0.76 ± 0.10 μm of SD before the reflow and 1.91 ± 0.15 μm of SD after the reflow, respectively. A mean difference in diameter of 2.64 ± 0.41 μm of SD before the reflow, and 1.87 ± 0.34 μm of SD after the reflow was obtained for 30 μm diameter MLs arrays. For these MLs, a mean difference in height of 0.71 ± 0.12 μm of SD before the reflow and 2.24 ± 0.24 μm of SD after the thermal reflow was obtained, in comparison to the 5.06 μm of height expected to obtain. These results validate the requirement for reproducibility and opens good perspectives for applying this fabrication process on high-volume production of MLs arrays.  相似文献   

16.
In this paper is presented the method for comparison of high value resistance standards by using the modified Wheatstone bridge and picoammeter as current detector. The advantage of current detection method over voltage detection method in bridge balancing using available laboratory equipment was evaluated. A four-step procedure for accurate and fast balancing of the bridge is explained. Experimental results confirm that resistance ratios in gigaohm range can be determined with relative uncertainties of only a few parts per million (ppm). By measuring the ratio on the level of 10:1, this method is introduced in Primary Electromagnetic Laboratory (PEL) for maintaining traceability chain of reference standards ranging from 10 MΩ to 100 GΩ.  相似文献   

17.
Micro holes with internal features are widely used as spray holes and cooling holes nowadays, which are usually required to be with high aspect ratio and shape accuracy, as well as good surface quality. An electrochemical machining (ECM) process is presented to machine these micro holes with diameter <200 μm. A quantitative relation between micro-hole diameter and machining parameters including voltage, duty ratio and feedrate is obtained through orthogonal experiments. According to the designed shape of internal features, change rules of machining parameters for varied diameters in different depth are obtained, and then micro holes with internal features are shaped precisely. Taking reverse tapered hole as an example, ECM experiments by varying parameters of voltage, duty ratio and feedrate (called varying voltage machining, varying duty ratio machining and varying feedrate machining, respectively) are carried out. Micro holes with inlet diameter of 178 μm and taper angle of 1.05° are shaped on a 1.0 mm-thick workpiece of 18CrNi8. The deviation of inlet is <3 μm and the taper-angle error is <0.1° in varying voltage machining. The corresponding dimensional accuracy of taper angle is improved by 51% than that of varying duty ratio machining under the same efficiency. The machining efficiency of varying voltage machining is increased by 36% compared to the efficiency in varying feedrate machining. In addition, the micro holes with complex features of funnel shape and bamboo shape are machined.  相似文献   

18.
《Wear》2006,260(7-8):766-782
The influence of the alkyl chain length and of the anion on the lubricating ability has been studied for the room-temperature ionic liquids (IL) 1-n-alkyl-3-methylimidazolium X [X = PF6; n = 6 (L-P106). X = BF4; n = 2 (L102), 6 (L106), 8 (L108). X = CF3SO3; n = 2 (L-T102). X = (4-CH3C6H4SO3); n = 2 (L-To102)]. Neat IL have been used for AISI 52100 steel-ASTM 2011 aluminium contacts in pin-on-disk tests under variable sliding speed. While all IL give initial friction values lower than 0.15, real-time sharp friction increments related to tribochemical processes have been observed for L102 and L-P106, at room-temperature and at 100 °C. Electronic microscopy (SEM), energy dispersive (EDS) and X-ray photoelectron (XPS) spectroscopies show that wear scar surfaces are oxidized to Al2O3 and wear debris contain aluminium and iron (for L102) fluorides. For L-P106, the steel surface is covered with a P-containing tribolayer. A change of anion (L-T102; L-To102) reduces friction and wear, but the lowest values are obtained by increasing the alkyl chain length (L106; L108). When the more reactive L102 and L-P106 are used as 1 wt.% base oil additives at 25 °C, tribocorrosion processes are not observed and a friction reduction (69–75% for 1 wt.% L102) and a change from severe (10−3 mm3 m−1) to mild wear (10−4 to 10−6 mm3 m−1) is obtained with respect to the neat IL. 1 wt.% IL additives also show good lubricating performance at 100 °C.  相似文献   

19.
In this paper, precision hard turning is proposed for the finishing of the AISI 52100 bearing components to improve rolling contact fatigue life. This finishing process induces a homogenous microstructure at surface and subsurface layers. Fatigue life tests performed on a twin-disk machine show that rolling contact fatigue life increases as Ra value decreases. The bearing components reached 0.32 million cycles for Ra=0.25 μm and 5.2 million cycles for Ra=0.11 μm. In comparison, the bearing components achieved 1.2 million cycles with grinding (Ra=0.2 μm) and 3.2 million cycles with grinding followed by honing (Ra=0.05 μm) respectively.  相似文献   

20.
This paper describes the design and validation of an upgraded grinding wheel scanner system that controls the position of a Nanovea CHR-150 Axial Chromatism sensor along the x- and y-directions of the wheel surface to measure and characterize wheel surface topography. The scanner features a novel homing system that enables the wheel to be removed from the scanner, used on a grinding machine and then re-mounted and re-homed so that the same location on the wheel surface can be repeatedly measured and monitored. The average standard deviation for homing was 27.6 μm and 19.3 μm in the x- and y-directions, respectively, which is more than adequate for typical area scans of 25 mm2. After homing, the scanner was able to repeatedly measure features that were similar in size to an abrasive grain (∼200 μm diameter) with an average error of 9.3 μm and 5.9 μm in the x- and y-directions, respectively. The resulting topography measurements were compared with Scanning Electron Microscope images to demonstrate the accuracy of the scanner. A custom particle filter was developed to process the resulting data and a novel analysis technique involving the rate of change of measured area was proposed as a method for establishing the reference wheel surface from which desired wheel topography results can be reported such as the number of cutting edges, cutting edge width and cutting edge area as a function of radial depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号