共查询到2条相似文献,搜索用时 0 毫秒
1.
H. Woo T. K. Dey 《The International Journal of Advanced Manufacturing Technology》2006,30(3-4):261-272
In a manufacturing area, design changes for an original surface model are frequently required: for example, when the physical parts are modified or when the parts are partially manufactured from analogous shapes. In this case, an efficient surface updating method by locally adding scan data for the modified area is highly desirable. For this purpose, this paper presents a new procedure to update an initial model that is composed of combinatorial triangular facets based on a set of locally added point data. Nowadays, many people are using surface models that are represented by triangular facets in reverse engineering, since it is fast and easy to create the triangular meshes directly from large amounts of point data. The initial surface model is first created from the initial point set by tight cocone, which is a water-tight surface reconstructor; and then the point cloud data for the updates is locally added onto the initial model maintaining the same coordinate system. In order to update the initial model, the special region on the initial surface that needs to be updated is recognized through the detection of the overlapping area between the initial model and the boundary of the newly added point cloud. After that, the initial surface model is eventually updated to the final output by replacing the recognized region with the newly added point cloud. The proposed method has been implemented and tested with several examples. This algorithm will be practically useful to modify the surface model with physical part changes and free-form surface design. 相似文献
2.
随机降维映射稀疏表示的电能质量扰动多分类研究 总被引:7,自引:0,他引:7
提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法.首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解决方案求取扰动信号测试样本的稀疏解,由冗余误差最小值确定目标归属类,实现对电能质量扰动的稀疏表示多分类识别.研究表明随机矩阵降维映射特征提取不依赖于电能扰动样本特性,构造简单,运算快速,具有普适性;稀疏表示分类法与支持向量机相比无需组合多个二分类器来实现多分类器.仿真和实验结果表明该方法能有效提取各种电能扰动特征,抗噪声鲁棒性好,在信噪比20dB以上的噪声环境中电能质量扰动分类准确率达95%以上. 相似文献