首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A method of enhancing the electrical conductivity of 3,4-ethylenedioxythiophene:poly styrene sulfonate (PEDOT:PSS) by combining solvent treatment (adding high polar solvent: 5 wt% ethylene glycol) and adding a small amount of silver (Ag) nanoparticles in a solution was investigated. The main purpose of this was to apply a PEDOT:PSS conductive layer to micro-thermal devices driven by electricity and, for this, to reduce the layer thickness (for low stiffness) while maintaining necessary high electrical conductivity. Layers with thicknesses of less than about 10 μm were examined for electrical conductivity and temperature when electricity was applied. The solvent treated PEDOT:PSS had suitable electrical resistance to generate appropriate temperature properties. The added Ag nanoparticles reduced the electrical resistance by 30–70% over the measured thickness range. The electric conductivity applied with this method was 200–260 Ω−1 cm−1 for thicknesses of 1–2 μm (conductive area: 12 mm × 10 mm) and the generated temperature increase was 20–50 °C at applied voltages of 3–5 V. These characteristics are considered to be suitable to use the conductive layer as a heating element. In addition, the method we used scarcely degraded the transparency of the layer. Measurements of the conductive area in a layer with conductive atomic force microscope (AFM) indicated that the added Ag nanoparticles contributed to increasing the conductive areas and distributing them more uniformly.  相似文献   

2.
This paper investigates the unidirectional conductivity of semiconductor crystals machined by electrical discharge machining (EDM) by analyzing the properties of current–voltage (IV) curves of the equivalent circuit. The simplified equivalent circuit of a semiconductor EDM consists of reverse-biased diodes and linear resistance. The IV curve has three typical parameters, namely, conduction angle, breakdown angle, and breakdown point. The values of the conduction angle and the breakdown point are determined by the contact area of the reverse-biased diode, and the breakdown angle is determined by the value of linear resistance. Two diodes exist in the model with two metal electric feeders. To increase the current in this model, the diode with larger contact area should be reverse-biased. If the work piece is connected to anode in semiconductor EDM, the diode in the conduction side is reverse-biased and the avalanche voltage is only 42 V. If the work piece is connected to the cathode in semiconductor EDM, then the arc plasma, which is a termination with a small area, becomes reverse-biased. The temperature in the arc plasma side is high, causing the breakdown voltage to be much higher than the theoretical calculation value 88.5 V. As a result, when the work piece is connected to the cathode, spark production is difficult. Holes are bored on the P-type semiconductor crystals by positive and negative polarity, which could prove that machining with positive polarity is suitable for P-type semiconductor crystals during EDM. When the no-load voltage is set to 150 V, the penetration speed by positive polarity can reach 533 μm/min.  相似文献   

3.
The effect of the localized surface plasmon resonance (SPR) on optical absorption and photoluminescence of Sm3+-doped sodium borosilicate glass containing reduced silver nanoparticles (NPs) is reported (Ag+  Ag0). The interaction of ultraviolet light by metallic NPs and its effect on the optical properties of samarium in proposed glass were investigated by absorption and photoluminescence spectra analysis. The existence of the NPs was pursued by transmission electron microscopy technique, revealing the existence of Ag NPs with average size of ∼8–14 nm. The largest enhancement was achieved for emission at 561 nm. Such improvements were attributed and discussed by enhanced electric field around metallic NPs and energy transfer (ET) between Sm3+ ions and silver NPs.  相似文献   

4.
In micro electrical discharge machining (EDM), because the material removal per single pulse discharge mainly determines the minimum machinable size of a micro EDM, decreasing the material removal per single pulse discharge is important. In this study, in order to decrease the material removal per single pulse discharge, high electric resistance materials such as single-crystal silicon are used for electrodes. Analytical results show that when the electrode resistance increases, the peak value of the discharge current decreases, whereas the pulse duration increases. In addition, the discharge energy decreases when increasing the resistance. Silicon is used as a tool electrode, and the effect of resistivity of the silicon tool electrode on the diameter of discharge craters generated on the stainless steel workpiece is examined. Experimental results reveal that with increasing silicon electrode resistivity, the diameter of discharge craters decreases. Because the diameter of discharge craters can be decreased to 0.5 μm, improved finished surfaces of Rz 0.03 μm are obtained.  相似文献   

5.
AgNPs/PMA hybrid nanocomposite materials with different Ag loadings have been synthesized using a simple chemical route assisted by UV irradiation. The hybrid composites were characterized by means of SEM and TEM, UV–vis spectroscopy and XPS. The as synthesized hybrid samples, composed of small Ag nanoparticles (AgNPs) embedded within the PMA (poly-methacrylic-acid) matrix, have been used to modify the working electrode of disposable screen printed carbon electrodes (SPCEs). It has been observed that hybrid composite with the lowest Ag loading forms dendritic silver structures on the surface of working electrode, whereas at higher loadings massive structures were formed. The electrocatalytic properties of the AgNPs/PMA/SPCEs were investigated toward the reduction of nitrate at neutral pH. Based on these modified electrodes, both voltammetric and amperometric sensors were developed for the electrochemical sensing of nitrate. Voltammetric sensor showed a wide linear range (0–20 mM) and high sensitivity (130 μA mM−1 cm−2).  相似文献   

6.
The paper presents an approach toward an enhancement of the measuring range of high-speed sensors for the measurement of liquid film thickness distributions based on electrical conductance. This type of sensors consists of electrodes mounted flush to the wall. The sampling of the current generated between a pair of neighboring electrode is used as a measure of the film thickness. Such sensors have a limited measuring range, which is proportional to the lateral distance between the electrodes. The range is therefore coupled to the spatial resolution. The proposed new design allows an extension of the film thickness range by combining electrode matrices of different resolution in one and the same sensor. In this way, a high spatial resolution is reached with a small thickness range, whereas a film thickness that exceeds the range of the high resolution measurement can still be acquired even though on the costs of a lower spatial resolution. A simultaneous signal acquisition with a sampling frequency of 3.2 kHz combines three measuring ranges for the characterization of a two-dimensional film thickness distribution: (1) thickness range 0–600 µm, lateral resolution 2×2 mm2, (2) thickness range 400–1300 µm, lateral resolution 4×4 mm2, and (3) thickness range 1000–3500 µm, lateral resolution 12×12 mm2. The functionality of this concept sensor is demonstrated by tests in a horizontal wavy stratified air–water flow at ambient conditions. Using flexible printed circuit board technology to manufacture the sensor makes it possible to place the sensor at the inner surface of a circular pipe.  相似文献   

7.
Two miniaturized liquid film sensors (MLFS) based on electrical conductance measurement have been developed and tested. The sensors are non-intrusive and produced with materials and technologies fully compatible and integrable with standard microfluidics. They consist of a line of 20 electrodes with a purpose-designed shape, flush against the wall, covering a total length of 5.00 and 6.68 mm. The governing electronics achieve 10 kHz of time resolution. The electrode spacing of the two sensors is 230 μm and 330 μm, which allows measurements of liquid films up to 150 μm and 400 μm for sensors MLFSA and MLFSB, respectively. The sensor characteristics were obtained by imposing static liquid films of known thickness on top of the actual sensor. Further dynamic measurements of concurrent air-water flow in a horizontal microchannel were performed. The line of electrodes is placed across the flow direction with an angle of 3.53° from the direction of flow, allowing for a spatial resolution perpendicular to the flow of 14.2 μm for sensor MLFSA and 20.5 μm for sensor MLFSB. The high time and spatial resolution allows for fast and accurate detection of the presence of bubbles, and even measurement of film thickness and bubble velocity. Further information, such as the bubble shape, can be gathered based on the shape of the liquid layer underneath the bubble, which is particularly important for heat transfer studies in microchannels.  相似文献   

8.
In this paper, we present a study on a jet flow, assisted by low net charge ion wind from bipolar corona discharge setup. The ion wind is simultaneously generated from both positive and negative electrodes placed in parallel, adding momentum to the bulk flow directed alongside the electrodes and focused in the middle of interelectrode space. The electrodes are connected to a single battery-operated power source in a symmetrical arrangement, where the electrode creating charged ions of one polarity also serves as the reference electrode to establish the electric field required for ion creation by the opposite electrode, and vice versa. Multiphysics numerical simulation is carried out with programmable open source OpenFOAM, where the measured current-voltage is applied as a boundary condition to simulate the electrohydrodynamics flow. The jet flow inside the device is verified by hotwire anemometry using hotwires embedded within the device, with the measured values in good agreement with simulation. The corona discharge helped to focus the jet and increased the flow peak velocity from 1.41 m/s to 2.42 m/s with only 27.1 mW of consumed discharge power. The device is robust, ready-to-use and minimal in cost. In addition, as the oppositely charged corona flows are self-neutralized, the generated air flow remains neutral and therefore does not attach to a particular target, which expands the application range. These are important features, which can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, micro blowers, gas mixing, coupling and analysis with space constraints and/or where neutralized discharge process is required, such as circulatory flow heat transfer or the formation of low charged aerosol for inhalation and charged particle deposition.  相似文献   

9.
Micro-milling is a promising approach to repair the micro-defects on the surface of KH2PO4 (KDP) crystal. The geometrical parameters of micro ball end mill will greatly influence the repairing process as a result of the soft brittle properties of KDP crystal. Two types of double-edged micro ball end mills were designed and a three-dimensional finite element (FE) model was established to simulate the micro milling process of KDP crystal, which was validated by the milling experiments. The rake angle of −45°, the relief angle of 45° and the cutting edge radius of 1.5–2 μm were suggested to be the optimal geometrical parameters, whereas the rake angle of −25° and the relief angle of 9° were optimal just for micro ball end mill of Type I, the configuration with the rake angles ranging from 0° to 35°, by fully considering the cutting force, and the stress–strain distribution over the entire tool and the cutting zone in the simulation. Moreover, the micro polycrystalline diamond (PCD) ball end mills adopting the obtained optimal parameters were fabricated by wire electro-discharge machining (WEDM) and grinding techniques, with the average surface roughness Ra of tool rake face and tool flank face ∼0.10 μm, and the cutting edge radius of the tool ∼1.6 μm. The influence of tool's geometrical parameters on the finished surface quality was verified by the cutting experiments, and the tool with symmetric structure was found to have a better cutting performance. The repairing outlines with Ra of 31.3 nm were processed by the self-fabricated tool, which could successfully hold the growth of unstable damage sites on KDP crystal.  相似文献   

10.
In the present work, thin films of Fe2O3 were deposited onto stainless steel substrates by electrodeposition method. All deposited electrodes were annealed for 1 h within the temperature range of 423–673 K with an interval of 50 K. These were further characterized for their structural and morphological measurements by means of X-ray diffraction and scanning electron microscopy techniques, respectively. The supercapacitive characteristics of as-deposited and annealed electrodes were carried out in 1 M KOH electrolyte to confirm the variation in specific capacitance, specific energy, specific power and columbic efficiency, etc., with annealing temperatures.  相似文献   

11.
A high resistance measuring system (HRMS) is used to measure the surface insulation resistance (SIR) values of the printed circuit board (PCB), and monitor whether a momentary circuit short and/or the case of current slow leakage occur, which will affect the electrical properties of electronic components. This study constructs a dynamic parameter design for optimization of the test parameters of the HRMS in order to obtain robust test results. The optimal test parameters for SIR testing are: 390 ms test time, 100 V test voltage, 100 V, 15 s charge time, and 100 s pause interval. Further investigation is conducted on the impact of the test parameters on the measurement performance.  相似文献   

12.
A resistance type humidity sensor has been fabricated from an assembly of CaCu3Ti4O12 thick film, Ag interdigitated electrodes, and an Al2O3 ceramic substrate. The humidity sensing properties were measured using the direct current (DC) analysis method. The results show that the electrical properties of the CaCu3Ti4O12 thick film are dependent on humidity and applied voltage. At low humidity, the film exhibited low conductivity and behaved as an insulator. However, at high humidity, the conductivity of the film increased due to the enhancement of ion conduction. These outcomes indicate that the measured resistance is highly dependent on the applied bias voltage within the whole humidity range i.e. 20–90% relative humidity (RH) at ambient temperature. The response and recovery times as well as sensitivity were determined to be around 2.8 min, 25 min, and 98.2%, respectively. Therefore, it is concluded that CaCu3Ti4O12 thick film has good humidity sensing properties and has high potential in the application for fabrication of high-performance humidity sensors.  相似文献   

13.
The back-propagation (BP) and generalized regression neural network models (GRNN) were investigated to predict the thin layer drying behavior in municipal sewage sludge during hot air forced convection. The accuracy of the BP model to predict the moisture content of the sewage sludge thin layer during hot air forced convective drying was far higher than that of the GRNN model. The GRNN models could automatically determine the best smoothing parameters, which were 0.6 and 0.3 for predicting the moisture content and average temperature, respectively. The model type for predicting the average temperature of the sewage sludge thin layer was selected for different sample groups by comparing their MSE values or R2 values. The GRNN model was suitable for predicting the average temperature corresponding to the sample groups at hot air velocity of 0.6 m/s, and drying temperatures of 100 °C, 160 °C; hot air velocity of 1.4 m/s, and drying temperatures of 130 °C, 140 °C; hot air velocity of 2.0 m/s, and drying temperatures of 150 °C, 160 °C. The average temperature for the other sample groups was best predicted by the BP model.  相似文献   

14.
Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n  2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n.  相似文献   

15.
Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.  相似文献   

16.
Silicone rubber has been widely used for electrical insulation in several power devices, e.g.: power insulators and metal-oxide surge arresters. In accordance with international standards, High-Temperature-Vulcanization Silicone Rubber for electrical power insulation should support 3.0 kV in electrical tracking and erosion tests, which are well established by the IEC. However, most of silicone rubbers used for manufacturing of electrical power components supports a maximum voltage of 2.75 kV. This research proposes a careful evaluation of the electrical performance of a new 6.0 kV silicone rubber developed by a worldwide-known manufacturer in the electrical power segment. The new silicone rubber is submitted to electrical tracking and erosion tests using two different approaches described in the IEC 60587: the step and steady methods. These two testing procedures are carried out in AC, following the normative recommendations, and also adapted for DC analyses. This research presents three principal contributions: a testing methodology considering both AC and DC, important conclusions on an emergent technology for electrical insulation in power systems and a quantitative analysis of erosion in polymeric composites based on the mass loss.  相似文献   

17.
This paper presents the effect of soil liquidity index and cement stabilizer on strength properties for the usage of low traffic volume subgrade roads. Three types of soil were used to represent a different soil based on liquid limit value. Standard proctor tests have been conducted to determine the Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) of stabilized soils with 0%, 7%, and 13% Ordinary Portland Cement (OPC). In order to study the effect of the soil Liquidity Index, various moisture contents are used based on the OMC value from the compaction test (0.9, 1.0, and 1.1 from OMC). The California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS) tests were conducted to determine the strength of all soil samples at optimum moisture content after 7 days curing period. It has been observed that the CBR and UCS values increased by increasing the percentage of cement content. This study found that 7% of cement content was the optimum percentage of cement content to be added to all tested soils to achieve the minimum required strength of 0.8 MPa and 80% CBR for low traffic volume roads. The presented results could provide a guideline for engineers as regards the property changes of the local subgrade materials in a tropical area due to the addition of cement content.  相似文献   

18.
The specific absorption rate produced in a rat’s brain phantom inside of quadrature birdcage coil as a function of the rung number was studied at 300 MHz. Electromagnetic field simulations and specific absorption rate and loss return responses were performed using a rat’s brain phantom weighing 100 mg. To assure optimal simulations and to evaluate coil performance, S-parameters were simulated and compared with experimentally data. Simulations showed that magnetic field uniformity improves and that electric field is increased with the number of rungs. Specific absorption rate and temperature values obtained from axial bi-dimensional maps increase as the number of rungs grows. These results corroborated very well with published data. A quadrature 16-rung birdcage coil was developed for comparison and phantom images were acquired to show its feasibility. The presented approach yields information on specific absorption rate allowing to previously develop RF coils and their possible effects on the biological sample.  相似文献   

19.
M.D. Abad  J.C. Sánchez-López 《Wear》2013,297(1-2):943-951
A fully comprehensive study of the tribological behavior of palladium nanoparticles (Pd NPs) capped by tetrabutylammonium chains using a ball-on-disk tribometer under different conditions of applied load, concentration, tribometer motion, linear speed and nature of the counterface is revised. A low concentration of NPs (2 wt%) in tetrabutylammonium acetate was found sufficient to improve the tribological properties due to the formation of a protective transfer film (TF) comprised of metallic Pd. The increase of the applied load (up to 20 N, 1.82 GPa of contact pressure) confirmed the excellent extreme-pressure behavior avoiding the counterfaces from severe wear. After a running-in period whose duration depends on the operating conditions, the TF build-up allows to maintain a low contact electrical resistance through the contact (<0.1 kΩ) during the entire test. When the Pd NPs are used with ceramic counterfaces, the nanoparticles increase the load-bearing capabilities and performance of the base without forming TF, likely by mixed or boundary lubrication and healing effects. Finally, the Pd NPs are demonstrated to be useful as a thin solid lubricant film in reciprocating motion yielding a comparable tribological behavior. Hence, the presented surface Pd NPs can be very helpful to extend life of sliding components due to their high strength resistance providing a gateway to electrical conduction as well.  相似文献   

20.
We propose a non-contact temperature measurement method that combines the temperature dependence of transmittance below 600 °C and radiation thermometry above 600 °C. The combined method uses a polarization technique and the Brewster angle between air and a dielectric film such as SiO2 or Si3N4 grown on silicon wafers. A prominent feature of this method is that both measurements of transmittance and radiance are performed with the same geometrical arrangement.For a semitransparent wafer, the measurement of p-polarized transmittance at the wavelengths of 1.1, 1.2 and 1.3 μm enables temperature measurement in the range from room temperature to 600 °C. For an opaque wafer above 600 °C, the p-polarized radiation thermometry at the wavelength of 4.5 μm allows the temperature measurement without the emissivity problem. The combined method with the use of transmittance and radiance is valid in the entire temperature range irrespective of variations of film thickness and resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号