首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new optical method of coordinate measuring machine (CMM) verification. The proposed system based on a single-mode fiber optical-comb pulsed interferometer with a ball lens of refractive index 2 employed as the target. The target can be used for absolute-length measurements in all directions. The laser source is an optical frequency comb, whose repetition rate is stabilized by a rubidium frequency standard. The measurement range is confirmed to be up to 10 m. The diagonals of a CMM are easier to verify by the proposed method than by the conventional artifact test method. The measurement uncertainty of the proposed method is also smaller than that of the conventional method because the proposed measurement system is less affected by air temperature; it achieves an uncertainty of approximately 7 μm for measuring lengths of 10 m. The experimental results show that the measurement accuracy depends on noise in the interference fringe, which arises from airflow fluctuations and mechanical vibrations.  相似文献   

2.
A simplified technique using short term Fourier transform to reduce the errors in distributed temperature measurement with a Raman scattering based optical fiber sensor system is presented. The two main sources of errors are differential attenuation to anti-Stokes and Stokes signal by fiber and local change in Stokes due to change in temperature. The proposed technique compensates these errors and extracts correct temperature profile in spite of practical difficulties encountered in applying the theoretical concept. Moreover proposed technique is less complex, self-reliant, can tolerate variation in laser power, requires less dead zone and suits automation using embedded solution. Results of measurement carried out, using the system developed at RRCAT, Indore, for two hot zones having spatial width of 1.9 m (kept at 56 °C) and 1.5 m (kept at 78 °C), located at 47 m and 85 m respectively, show that these parameters can be recovered with significantly small errors.  相似文献   

3.
The absolute optical thickness and surface shape of optical devices are considered as the fundamental characteristics when designing optical equipment. The thickness and surface shape should be measured simultaneously to reduce cost. In this research, the absolute optical thickness and surface shape of a 6–mm-thick fused silica transparent plate of diameter 100 mm was measured simultaneously by a three-surface Fizeau interferometer. A measurement method combining the wavelength tuning Fourier and phase shifting technique was proposed. The absolute optical thickness that corresponds to the group refractive index was determined by wavelength tuning Fourier analysis. At the beginning and end of the wavelength tuning, the fractional phases of the interference fringes were measured by the phase shifting technique and optical thickness deviations with respect to the ordinary refractive index and surface shape were determined. These two kinds of optical thicknesses were synthesized using the Sellmeier equation for the refractive index of fused silica glass, and the least square fitting method was used to determine the final absolute optical thickness distribution. The experimental results indicate that the all the measurement uncertainties for the absolute optical thickness and surface shape were approximately 3 nm and 35 nm, respectively.  相似文献   

4.
A simple and fire safe gasoline level sensor has been designed based on displacement sensor using fiber coupler. The sensing principle is to detect displacement of reflector, which is attached to membrane (reflector displacement device), due to the change of gasoline hydrostatic pressure. The displacement of reflector can be detected using fiber coupler from the change of optical power light reflected by the reflector. Three kinds of reflector displacement device used in this experiment are one-layer, two-layer, and three-layer membrane. The experimental results are 0–180 cm of dynamic range, 100–140 cm of linear range, 3.2 mV/cm of sensitivity, and 0.6 cm of resolution for reflector displacement device with one-layer membrane for emptying the tank process. The hysteresis data for emptying and filling the tank process yields the mean of difference 20% for one-layer membrane.  相似文献   

5.
A gas pressure sensor based on an all-fiber Fabry-Pérot interferometer (FFPI) is reported. The sensing head consists of a small section of silica rod spliced with a large offset between two single-mode fibers. The silica rod is used only as mechanical support so that an air cavity can be formed between both SMF. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen – sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively, were attained. The refractive index change on nitrogen environment by means of gas pressure variation was also determined and a sensitivity of 1526 nm/RIU was obtained. The response of the sensing device to temperature variations in air was also studied and a sensitivity of −14 pm/°C was attained.  相似文献   

6.
This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.  相似文献   

7.
Detection of gasoline level can be done in a safe and simple way using two output port multimode fiber coupler with a structure of 2 × 2 as a sensor. Two output ports (sensing port) are connected with two reflector displacement device (RDD) and functioned as two probes. These probes are placed on the wall of gasoline tank in a storied and work interchangeably or together depending on setting of these probes. Detection mechanism of the system is based on changes in intensity of reflected light from the reflector RDD that shifts due to changes in level of gasoline (hydrostatic pressure principle). Changes in intensity of light coming into the sensing port are then forwarded to the optical detector. Experiments performed by varying the location of the second probe as 45 cm, 50 cm, and 55 cm above the first probe to detect the level of gasoline in the process of filling and emptying the tank. Experimental results show the process of filling and emptying the tank have small differences of 6% with the dynamic range, the linear region, and resolution are 100 cm, 70 cm, and 0.4 cm respectively. Sensor sensitivity in filling and emptying process of the tank are 2.7 mV/cm and 2.8 mV/cm respectively. These results were the best performance of the sensor, which occurs when the level of the second probe was 55 cm above the first probe.  相似文献   

8.
We report on the design, construction and evaluation of a low-cost digital environmental monitoring system based on a popular micro-computer board and mass market digital sensors. The system is based around the use of open source software and readily available digital sensors, providing key parameters required for environmentally-controlled calibration laboratories: air temperature, pressure and humidity. Each system logs data at set intervals with front-panel display, web page graphical display and email alerting when exceeding set tolerances. The sensors have been calibrated at the National Physical Laboratory using standards traceable to the SI. Long term stability of the system is estimated and in addition to monitoring of laboratory environments for regulatory purposes, the systems can also be used to provide on-demand values for local refractive index with an expanded (k = 2) uncertainty of 1.1 × 10−7 as required for many optical-based measuring systems.  相似文献   

9.
The multi-wavelength fiber sensor for measuring surface roughness and surface scattering characteristics were investigated. In this paper, specimens with different surface roughness were analyzed by using 650 nm, 1310 nm and 1550 nm laser as the light source, respectively. The working distance of 2 mm was chosen as the optimum measurement distance. The experimental results indicate that multi-wavelength fiber sensor can accurately measure surface roughness, and can effectively reduce the unsystematic error. The light scattering intensity ratio has a good linear relationship with the surface roughness. The minimum relative error of the surface roughness is 2.92%, the maximum relative error is 13.4%, and the average relative error is about 7.48%. The accuracy for measuring surface roughness by multi-wavelength fiber sensor is about twice as large as that by single-wavelength fiber sensor.  相似文献   

10.
The fiber Bragg grating geophone sensor with higher sensitivity and wider frequency range was reported. The methods to increase the sensitivity of the FBG cantilever sensor were presented. The acceleration sensitivity of the optimized FBG geophone is 220 pm/g, and the resonant frequency can reach to 295 Hz. The experiments show that the FBG geophone system has the minimum detectable acceleration of 1 mm/s2. Some factual application examples of using this fiber Bragg grating geophone monitoring system for micro seismic monitoring in coal mine were presented.  相似文献   

11.
A subpixel edge location method based on orthogonal Jacobi–Fourier moments is proposed in this paper to improve the performance of optical fiber spherical coupling probe during dimensional measurement of micro-cavities with high aspect ratio. The effectiveness of the proposed method is proved through the performance test of a micro-hole measuring machine with optical spherical coupling probe. Test results indicate that a blind micro-hole of 400 μm in diameter can be experimentally measured at the depth of 2000 μm with a repeatability of 40 nm and an extremity resolution of 42 nm.  相似文献   

12.
A new approach is proposed to improve a graphical approach with considering intensity coupling loss coefficients in the analytical derivation of the optical transfer functions for a symmetric double stage vertically coupled microring resonator. An optimum transmission coupling condition is determined with considering terms of couplers intensity loss which leads to low insertion loss of 1.2 dB, finesse of 1525, the out of band rejection ratio of 61.8 dB. The resonating system is used as an optical force sensing system to make the benefit of the accuracy of measurements in micro and nano scales. The sensitivity of proposed force sensor in terms of wavelength-shift is 33 nm/nN and the limit of detection is 1.6 × 10−2 nN. The proposed sensing system has the advantages of self-calibration and the low power consumption due to the low intensity.  相似文献   

13.
We demonstrate a simultaneous distributed strain and temperature measurement technique with the spatial resolution of 1 mm using fiber Bragg gratings inscribed in a polarization-maintaining and absorption-reducing fiber (PANDA-FBGs) and optical frequency domain reflectometry (OFDR). We conduct four-point bending tests in an environmental chamber. Using high birefringent PANDA-FBGs that are manufactured specifically for the simultaneous measurements, the uniform temperature distributions and the typical strain distribution profiles of the four-point bending tests were successfully obtained. The measurement errors of strain were from −31 με to 19 με, and of temperature were from −0.9 °C to 1.3 °C. The spatial standard deviation was 7.5 με and 0.9 °C. We also discussed the effect of the residual strain of the sensor-bonding procedures and the data averaging.  相似文献   

14.
We developed a promising shearing force sensor that is small in size and can measure shearing force along two axes independently. This sensor consists of an elastic gum frame and an optical sensor chip (6 mm × 6 mm × 8 mm). From the experimental results, the resolutions of the sensor along the x- and y-axes are found to be 0.070 N and 0.063 N. We also experimentally demonstrated that the sensor can separately measure shearing force along two axes. Finally, we demonstrated that the scale factor which correspond to resolution and linear portion which correspond to measuring range of the signals can be changed easily by using three types of elastic gum frame. This sensor can be embedded in the finger of a robot hand and use it to not only measure shearing force but also detect the slip phenomenon.  相似文献   

15.
Bi/Er co-doped optical fiber is one of the solutions for wave band extending technology which is very important for fiber amplifiers, lasers and communication system. Pump option can alter emission band of the Bi/Er co-doped fiber. In this paper, optimization of pump wavelength is proposed. A high Bi concentration co-doped Bi/Er optical fiber is tested as a sample to demonstrate pump wavelength influence to the emission spectrum band. An optical fiber measurement system is provided to measure out characteristics of active optical fibers. And some useful results and parameters of pump optimizing for Bi/Er co-doped optical fiber are discussed in detail. From this research, optimized pump wavelength is suggested around 1350 nm to get a wider continue spectrum covers from 1300 nm to 1600 nm.  相似文献   

16.
A potential step method was used to characterize the electrooxidation of methanol on a chemically modified electrode in an ionic liquid solvent. Two major findings were reported from this study. Firstly, the oxidation was dominant 2.2 s after the potential step. Before that, the double layer charging and adsorption were dominant. Therefore, there should be a waiting time of a few seconds if a methanol sensor is developed with a potential step method. Secondly, the oxidation of methanol on the electrode was diffusion controlled. The concentration of methanol affected the diffusion. The diffusion constant D0 was 8.37 × 10−17 m2/s when the concentration was lower than 0.5 M and was 2.66 × 10−13 m2/s when the concentration was higher than 1.0 M. This suggests that the methanol concentration should be kept higher than a threshold in an ionic liquid based fuel cell.  相似文献   

17.
The detection of contaminated food in every stage of processing required new technology for fast identification and isolation of toxicity in food. Since effect of food contaminant are severe to human health, the need of pioneer technologies also increasing over last few decades. In the current study, MDA was prepared by hydrolysis of 1,1,3,3-tetramethoxypropane in HCl media and used in the electrochemical studies. The electrochemical sensor was fabricated with modified glassy carbon electrode with polyaniline. These sensors were used for detection of sodium salt of malonaldehyde and observed that a high sensitivity in the concentration range ∼1 × 10−1 M and 1 × 10−2 M. Tafel plots show the variation of over potential from  1.73 V to  3.74 V up to 10−5 mol/L indicating the lower limit of detection of the system.  相似文献   

18.
The effect of the localized surface plasmon resonance (SPR) on optical absorption and photoluminescence of Sm3+-doped sodium borosilicate glass containing reduced silver nanoparticles (NPs) is reported (Ag+  Ag0). The interaction of ultraviolet light by metallic NPs and its effect on the optical properties of samarium in proposed glass were investigated by absorption and photoluminescence spectra analysis. The existence of the NPs was pursued by transmission electron microscopy technique, revealing the existence of Ag NPs with average size of ∼8–14 nm. The largest enhancement was achieved for emission at 561 nm. Such improvements were attributed and discussed by enhanced electric field around metallic NPs and energy transfer (ET) between Sm3+ ions and silver NPs.  相似文献   

19.
The paper presents an approach toward an enhancement of the measuring range of high-speed sensors for the measurement of liquid film thickness distributions based on electrical conductance. This type of sensors consists of electrodes mounted flush to the wall. The sampling of the current generated between a pair of neighboring electrode is used as a measure of the film thickness. Such sensors have a limited measuring range, which is proportional to the lateral distance between the electrodes. The range is therefore coupled to the spatial resolution. The proposed new design allows an extension of the film thickness range by combining electrode matrices of different resolution in one and the same sensor. In this way, a high spatial resolution is reached with a small thickness range, whereas a film thickness that exceeds the range of the high resolution measurement can still be acquired even though on the costs of a lower spatial resolution. A simultaneous signal acquisition with a sampling frequency of 3.2 kHz combines three measuring ranges for the characterization of a two-dimensional film thickness distribution: (1) thickness range 0–600 µm, lateral resolution 2×2 mm2, (2) thickness range 400–1300 µm, lateral resolution 4×4 mm2, and (3) thickness range 1000–3500 µm, lateral resolution 12×12 mm2. The functionality of this concept sensor is demonstrated by tests in a horizontal wavy stratified air–water flow at ambient conditions. Using flexible printed circuit board technology to manufacture the sensor makes it possible to place the sensor at the inner surface of a circular pipe.  相似文献   

20.
This paper presents time resolved quantitative evaluation of elastic stress waves in solid media by utilising an adaptation of the well-established laser Doppler vibrometry method. We show that the introduction of elastic stress waves in a transparent medium gives rise to detectable and quantifiable changes in the refractive index, which is proportional to stress. The method is tested for mechanical excitation at frequencies from 10 to 25 kHz in an acrylic bar. This refractometric quantification can measure internal strains as low as 1 × 10−11. Additionally, finite element analysis is conducted to gauge the validity of the results. In the presented work an acrylic bar is used, this method however should be applicable to any transparent solid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号