首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cyclic material tests were done on Divinycell PVC H100 foam to obtain out-of-plane and in-plane compression and shear material properties after foam yielding. The compression and shear stress–strain behaviors were very similar to each other except that a plateau (flow) stress occurred after yielding in compression, while the foam underwent mild strain hardening after shear yielding. The ratio of out-of-plane to in-plane stiffness and yield strength for the PVC H100 was found to be approximately 3/2 in both the compression and shear modes. After viscoplastic yielding, the foam underwent permanent damage and exhibited hysteresis, mainly in the form of viscoelasticity. Damage that occurred in the foam after it yields followed the pattern of Mullins damage, i.e., the damage was essentially fixed at a given strain amplitude, and more damage occurred with increasing the strain amplitude. Hysteresis was much more pronounced as the damage grew, suggesting that viscoelastic properties of the foam could be changing with the amount of damage.  相似文献   

2.
2.5D C/SiC复合材料连续损伤本构模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于连续损伤力学建立了一种包含拉伸与剪切损伤变量的2.5D C/SiC复合材料连续损伤本构模型。分别开展了拉伸和剪切试验,获得应力-应变曲线,并通过拟合试验曲线获得各损伤变量的演化参数。采用子程序技术将本构模型嵌入商用有限元软件ANSYS,应用有限元法计算了材料的应力-应变曲线。考虑了拉剪损伤耦合效应,计算了偏轴拉伸情况下的应力-应变曲线。结果表明:沿经纱拉伸、沿纬纱拉伸以及面内剪切的应力-应变曲线与试验结果吻合,最大偏差依次为4.30%、3.09%及3.73%;偏轴拉伸计算与试验应力-应变曲线也吻合较好。   相似文献   

3.
基于V型缺口试样双轨剪切法设计了面内剪切试验方案,开展了莫来石纤维增强气凝胶复合材料的室温面内剪切和弯曲性能试验,采用数字图像相关方法对试样表面的位移场和应变场进行测量,并分析了力学行为和破坏模式。结果表明:设计的试验方案可以在测试区域获得均匀的剪切应变场,适用于莫来石纤维增强气凝胶复合材料的面内剪切性能测试。试验获得的面内剪切模量和强度分别为248 MPa和0.95 MPa,弯曲模量和强度分别为294 MPa和2.08 MPa。面内剪切载荷下,试样的裂纹萌生于缺口尖端附近,并沿两缺口连线方向扩展。根据弯曲正应变场的分布特点,发现试样中性层与几何对称面不重合,验证了该材料拉压模量不同的性质。采用数字图像相关方法获得的中性层位置和理论计算值比较接近,相对误差在10%左右。  相似文献   

4.
Creasing is an essential process to convert paperboards into packages since it enables folding along well-defined lines. The creasing process relies on purpose-made damage that is initiated in the paperboard structure: delamination. However, creasing might also cause in-plane cracks, which must be avoided. In this laboratory study, three paperboards were creased at six different depths, respectively. Two mechanical tests were performed to characterize the creases at standard climate (23°C and 50% RH): 2-point folding, to examine the bending force and short-span in-plane tensile test to evaluate the strength. The results were normalized with the values for the uncreased boards, which gave the relative strength ratios: relative creasing strength (RCS) and relative tensile strength (RTS). When the relative strengths were evaluated against the normative shear strains, a creasing window was formed. This window has an upper limit given by the RTS values, corresponding to the in-plane cracks, and a lower limit given by the RCS values, corresponding to the delamination damage initiated in the paperboard during creasing. It was observed that both the RCS and RTS values exhibit a linear relation against normative shear strain. From this, it was concluded that performing tests at two creasing depths might be sufficient to estimate the lower, and upper, limits for the creasing window in future studies. Finally, the effect of moisture was investigated by creasing, folding and tensile testing at 23°C and 90% RH, which showed that moisture had no clear effect on the RCS or the RTS values.  相似文献   

5.
郭洪宝  谢骏 《材料工程》2019,47(10):160-165
基于轴向和45°偏轴加载实验,分别获得2D-SiC/SiC复合材料在单一轴向应力和复合应力状态下纤维束轴向方向上的拉伸、压缩和面内剪切应力-应变行为,计算分析材料在复合应力状态下的损伤耦合力学行为。结果表明,在45°偏轴拉伸和压缩复合应力状态下材料损伤耦合力学行为的起始应力分别约为40MPa和-100MPa。复合应力状态下材料纤维束轴向方向上的拉伸损伤和面内剪切损伤进程间具有相互促进作用,面内剪切损伤对压缩损伤进程具有促进作用,但是压缩应力分量对面内剪切损伤进程具有明显的抑制作用;上述损伤耦合作用随着应力水平的增加而越发显著。由试件断口电镜扫描结果可知,复合应力状态下材料纤维束轴向方向上3个应力分量对材料内部0°/90°和45°3种取向基体裂纹开裂损伤进程的影响作用,是2D-SiC/SiC复合材料产生损伤耦合力学行为的主要细观损伤机制。  相似文献   

6.
The present study examines in-plane and out-of-plane shear properties of an orthogonal 3D woven SiC fiber/SiC matrix composite. A composite beam with rectangular cross-section was subjected to a small torsional moment, and the torsional rigidities were measured using an optical lever. Based on the Lekhnitskii’s equation (Saint–Venant torsion theory) for a orthotropic material, the in-plane and out-of-plane shear moduli were simultaneously calculated. The estimated in-plane shear modulus agreed with the modulus measured from ±45° off-axis tensile testing. The effect of on-axis (0°/90°) tensile stress on the shear stiffness properties was also investigated by the repeated torsional tests after step-wise tensile loading. Both in-plane and out-of-plane shear moduli decreased by about 50% with increasing the on-axis tensile stress, and it is mainly due to the transverse crack propagation in 90° fiber bundles and matrix cracking in 0° fiber bundles. It was demonstrated that the torsional test is an effective method to estimate out-of-plane shear modulus of ceramic matrix composites, because a thick specimen is not required.  相似文献   

7.
为确定S2玻璃纤维/环氧树脂(S2-Glass/Epoxy) 叠层复合材料面内剪切应力-应变关系,对S2-Glass/Epoxy 叠层复合材料面内剪切拉伸载荷下的弹、塑性连续损伤本构模型及应用进行了研究。基于平面应力状态下的连续损伤力学模型,通过典型面内剪切拉伸实验,分别建立了忽略塑性应变和考虑塑性应变的两种连续损伤力学(CDM)模型,并确定相关参数。通过ABAQUS/Explicit 用户子程序VUMAT接口,分别采用两种CDM模型对S2-Glass/Epoxy 叠层复合材料面内剪切拉伸实验进行有限元数值计算,与实验结果对比,验证模型可靠性,并分析单元类型对有限元计算结果的影响。研究结果表明: 忽略塑性应变的CDM模型可以很好地预测复合材料面内剪切失效强度,但不能较好地预测其非线性力学响应; 考虑塑性应变,将塑性硬化与损伤耦合后的CDM模型则能较好的预测复合材料非线性力学响应和面内剪切失效强度; 该平面应力状态下建立的CDM模型可用于壳单元进行复合材料有限元数值计算,横向剪切作用导致传统壳单元数值计算的载荷位移曲线略低于平面应力单元计算结果; 减缩积分算法有利于提高有限元数值计算结果的准确性。  相似文献   

8.
《Composites》1995,26(1):17-24
The sensitivity of the tensile modulus for a number of Hercules AS4/3501-6 laminates to changes in the values of in-plane shear modulus was used to select the fibre orientations for four highly shear-sensitive laminates of the form [±θ1,±θ2]3s. The in-plane shear moduli for the Hercules AS4/3501-6 composite material were then determined for 90° Iosipescu, 10° off-axis tensile and ±45° tensile specimens. These values were used with classical laminate plate theory to predict laminate tensile moduli. The best agreement between these predicted values and those which were experimentally measured was obtained when the ± 45° tensile test method was used to determine the in-plane shear modulus.  相似文献   

9.
This study presents the in-plane shear and interlaminar shear behavior of the three dimensional (3D) angle interlock preforms with different fabric densities. Picture frame shear tests for the 3D woven preform were carried out, the non-linear curves of shear stress versus shear angle and the deformation mechanism were analyzed. A new test method was designed to characterize the inter-ply shear property. The samples after interlaminar shear tests were also investigated through the yarn pulling-out and meso-structure to discover their deformation and failure mechanism. The results have shown that the fabric density has significant influence on the in-plane shear and inter-ply shear properties of 3D angle interlock preforms and the shear performance decreases with the increasing of the fabric density. The lower fabric density, the better deformability. The inter-ply shear damage mode is the binder yarn pulling out from the fabric. It is expected that the study can provide an experimental basis for building up the theoretical model.  相似文献   

10.
针对平面编织氧化铝基复合材料提出了一种复杂面内应力状态下的强度准则和疲劳寿命预测方法。通过拉伸、压缩及纯剪切试验,分别获得了材料的静强度指标。考虑材料拉、压性能的差异和面内拉-剪联合作用对材料强度的影响机制,提出了修正的Hoffman强度理论。采用该强度理论预测得到的偏轴拉伸强度与试验结果基本一致,偏差不超过10%。开展了偏轴角θ=0°、15°、30°、45°,应力比R=0.1,频率f=10 Hz的拉伸疲劳试验,试验结果表明随着偏轴角的增加,相同轴向拉伸载荷下的疲劳寿命逐渐降低。由于面内剪切应力分量的作用,疲劳失效由纤维主导逐渐过渡到纤维和基体共同主导的模式。基于单轴疲劳寿命曲线,采用Broutman-Sahu剩余强度模型表征剩余强度随疲劳循环次数的变化规律,结合剩余强度演化模型和修正的Hoffman强度理论,提出了一种面内复杂载荷条件下的疲劳寿命预测模型,并引入疲劳剪切损伤影响因子表征拉-剪应力联合作用对材料疲劳行为的影响。采用本文提出的疲劳寿命预测模型,预测不同偏轴角拉伸疲劳寿命,预测结果与试验结果基本一致,偏差在1倍寿命范围内。比较结果表明在给定应力比、温度和疲劳载荷频率条件下,该疲劳寿命预测模型可以用来预测平面编织氧化铝基复合材料拉-剪复杂面内载荷条件下疲劳寿命。   相似文献   

11.
A series of biaxial static tests of E-glass/epoxy tubular specimens [±45]2, subjected to combined torsion and tension/compression were performed to simulate complex stress states encountered in a wind turbine rotor blade. The failure locus in the effective axial-shear stress plane was derived experimentally while in-plane strain tensor components were measured in the tube outer surface. By means of shell theory and strain measurements in the surface of the specimen, the in-plane shear response of the outer ply was obtained, revealing dependence each time to the combined tube loading. The correlation established between the ratio of transverse normal and in-plane shear stress in the principal coordinate ply system and the elastic shear modulus, suggested a strong dependence, warning on the implications for design and certification procedures.  相似文献   

12.
碳/碳复合材料疲劳损伤失效试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对单向碳/碳复合材料纵向拉-拉疲劳特性及面内剪切拉-拉疲劳特性进行了试验研究; 对三维四向编织碳/碳复合材料的纵向拉-拉疲劳特性及纤维束-基体界面剩余强度进行了试验研究。使用最小二乘法拟合得到了单向碳/碳复合材料纵向及面内剪切拉-拉疲劳加载下的剩余刚度退化模型及剩余强度退化模型, 建立了纤维束-基体界面剩余强度模型。结果显示: 单向碳/碳复合材料在87.5%应力水平的疲劳载荷下刚度退化最大只有8.8%左右, 在70.0%应力水平的疲劳载荷下, 面内剪切刚度退化最大可达30%左右; 三维四向编织碳/碳复合材料疲劳加载后强度及刚度均得到了提高; 随着疲劳循环加载数的增加, 三维四向编织碳/碳复合材料中纤维束-基体界面强度逐渐减弱。   相似文献   

13.
A comparison of substantial published data for 3D woven, stitched and pinned composites quantifies the advantages and disadvantages of these different types of through-thickness reinforcement for in-plane mechanical properties. Stitching or 3D weaving can either improve or degrade the tension, compression, flexure and interlaminar shear properties, usually by less than 20%. Furthermore, the property changes are not strongly influenced by the volume content or diameter of the through-thickness reinforcement for these two processes. One implication of this result is that high levels of through-thickness reinforcement can be incorporated where needed to achieve high impact damage resistance. In contrast, pinning always degrades in-plane properties and fatigue performance, to a degree that increases monotonically with the volume content and diameter of the pins. Property trends are interpreted where possible in terms of known failure mechanisms and expectations from modelling. Some major gaps in data and mechanistic understanding are identified, with specific suggestions for new standards for recording data and new types of experiments.  相似文献   

14.
In-plane shear performance of masonry panels strengthened with FRP   总被引:1,自引:0,他引:1  
The opportunities provided by the use of Fiber Reinforced Polymers (FRPs) composites for the shear strengthening of tuff masonry structures were assessed on full-scale panels subjected to in-plane shear-compression tests at the ENEL HYDRO S.p.A. laboratory, ITALY. Tuff masonry specimens have been arranged in order to simulate both mechanical and textural properties typical of buildings located in South-Central Italian historical centres. In this paper, the outcomes of the experimental tests are presented. The monotonic shear-compression tests were performed under displacement control and experimental data have provided information about in-plane behaviour of as-built and FRP strengthened tuff masonry walls. Failure modes, shear strength, displacement capacity and post-peak performance are discussed.  相似文献   

15.
为了探究莫来石纤维增强SiO_2气凝胶复合材料的拉伸和层间剪切性能,开展了相关试验。首先,进行了复合材料在室温下的面内拉伸试验,获得了复合材料的室温面内拉伸模量;然后,采用引伸计方法和数字图像相关法分别对拉伸变形进行测量,并对2种方法进行了对比分析;最后,开展了不同温度下的层间剪切试验,研究了复合材料在不同温度下的层间剪切性能,并对其微观结构进行了分析。结果表明:复合材料的拉伸模量约为285.17 MPa;由引伸计方法测得的拉伸变形计算出的拉伸模量比数字图像相关法获得的拉伸模量高2.4%;在室温和高温下,试样呈现明显的层间剪切破坏;对复合材料的微观分析发现,SiO_2气凝胶基体主要分布在层间区域,增强纤维主要分布在铺层内。所得结论表明莫来石纤维增强SiO_2气凝胶复合材料拉伸和层间性能较差,当承受层间载荷时,SiO_2气凝胶基体起主要作用,且温度对复合材料的性能影响较大。  相似文献   

16.
平纹编织复合材料中纤维束波动效应会引起随动材料主方向变化及面外剪切应力集中,为了研究其对平纹编织复合材料力学性能及损伤行为的影响,提出改进的像素法细观有限元单胞模型。模型根据纤维束波动曲线定义了材料主方向的变化,采用Hashin准则模拟纤维束的损伤起始,并引入剪切修正因子考虑面外剪切应力对面内拉伸损伤的影响。模型可以预测平纹编织复合材料的面内拉伸强度和损伤演化过程,结果表明:纤维束材料主方向波动会引起平纹编织复合材料面内拉伸强度下降;面外剪切应力集中是导致复合材料最终失效的主要原因,且随着剪切修正因子增大,复合材料面内拉伸强度显著降低;纤维束材料主方向波动和面外剪切应力集中均对平纹编织复合材料的损伤行为和破坏机理产生了影响,需要在数值分析中对其进行准确描述。   相似文献   

17.
Conventional unreinforced masonry walls subject to in-plane shear loading fail due to exceedance of shear and tensile bond strengths. This paper examines whether or not the in-plane shear capacity of masonry walls would increase with the increase in the bond strengths through experimental and numerical investigations. For these investigations, shear walls were built with high bond strength polymer cement mortar; they were applied in thin layers of 2 mm thickness each. Material tests were carried out to characterise the bond and the compressive strengths of the high bond strength thin layer mortared masonry; the bond strengths were found approximately double that of the conventional 10 mm thick cement mortars. The shear walls, however, exhibited significantly lower capacity (contrasting the expectation) and displayed base course sliding mode of failure. To ascertain the validity of the experimental results, a combined surface contact—interface element micro finite element (FE) modelling technique was formulated; the results adequately reproduced the experimental datasets. The validated FE model was then applied to examine the effect of the aspect ratios and pre-compression levels to the failure modes, deformation and strength of the high bond strength shear walls and is shown that once the pre-compression exceeds 15% of the masonry compressive strength, the base sliding failure mode changes to the diagonal cracking mode with corresponding increase in in-plane shear capacity. Therefore, it is concluded that the increase the bond strength without regard to pre-compression could adversely affect the safety of the high bond strength unreinforced masonry shear walls.  相似文献   

18.
《Composites》1990,21(6):495-502
This paper is concerned with the evaluation of three in-plane shear test methods for advanced carbon fibre composites for aerospace applications. To accomplish this goal, the losipescu, ± 45° tensile and 10° off-axis tensile shear test methods were evaluated for three advanced epoxy matrix materials (Narmco 5245C, Hexcel F584 and American Cyanamid Cycom 1806) reinforced with Hercules IM6 carbon fibres. The values of in-plane shear moduli obtained from the three test methods and three materials were then used with other previously determined elastic constants to predict the tensile moduli of (+45°/0°/−45°/90°)6s laminates. Comparison of the predicted and experimental laminate tensile moduli showed that any one of the three shear test methods was appropriate for determining the in-plane shear modulus to predict tensile moduli of symmetric laminates which consist of equal numbers of 0°, +45°, −45° and 90° oriented laminae.  相似文献   

19.
A study to investigate the factors that contribute to the variation among the stiffnesses of consolidated composite plates reinforced by plain-weave fabrics with various degrees of in-plane shear is presented. The first part of the two-part study focuses on the experiments performed. Three-point bend tests were used to measure the effective stiffness of the composite plates along the global X and Y axes, which were aligned with the weft and warp orientations, respectively, in the undeformed configuration at 0° of shear. The warp yarns were sheared 0°, 10°, 20°, 25° and 30° toward the weft yarns. It was observed that as the shear angle in the plates increased, the thickness of the plates also increased. An increase in stiffness for bending in X-direction with increasing shear angle was observed as was expected, but the change in stiffness for bending in Y-direction was observed to be inconsistent with the expected decrease with increasing degree of shear.  相似文献   

20.
Multiscale analyses are carried out to evaluate and understand the shear properties and behaviour of a flax fibre reinforced polyamide 11 (PA 11) biocomposite. Tensile tests of [±45]n laminates are performed to evaluate the macroscale in-plane shear properties, while microbond tests are performed to evaluate the apparent interfacial shear strength. Although the shear stiffness of PA 11 biocomposites is lower than the available literature values, the shear strength is higher due to a relatively high interfacial bonding strength. Flax/PA 11 interfacial bonding is controlled by hydrogen bonding rather than adhesive pressure induced by residual thermal stress. A superficial fibre cell-wall layer (primary cell-wall) is observed at different scales, which highlights the contribution of the global structure of flax fibres to the shear properties of biocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号