首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane coupling to produce C2 hydrocarbons through a dielectric-barrier discharge (DBD) plasma reaction was studied in four DBD reactors. The effects of high voltage electrode position, different discharge gap, types of inner electrode, volume ratio of hydrogen to methane and air cooling method on the conversion of methane and distribution of products were investigated. Conversion of methane is obviously lower when a high voltage electrode acts as an outer electrode than when it acts as an inner electrode. The lifting of reaction temperature becomes slow due to cooling of outer electrode and the temperature can be controlled in the expected range of 60°C–150°C for ensuring better methane conversion and safe operation. The parameters of reactors have obvious effects on methane conversion, but it only slightly affects distribution of the products. The main products are ethylene, ethane and propane. The selectivity of C2 hydrocarbons can reach 74.50% when volume ratio of hydrogen to methane is 1.50. __________ Translated from Petrochemical Technology, 2007, 36(11): 1099–1103 [译自: 石油化工]  相似文献   

2.
Studies were conducted at atmospheric pressure at temperatures in the range of 400–500°C and fluidizing gas velocities in the range of 0.37–0.58 m/min (at standard temperature and pressure) to evaluate the performance of various cracking catalysts for canola oil conversion in a fluidized-bed reactor. Results show that canola oil conversions were high (in the range of 78–98 wt%) and increased with an increase in both temperature and catalyst acid site density and with a decrease in fluidizing gas velocity. The product distribution mostly consisted of hydrocarbon gases in the C1–C5 range, a mixture of aromatic and aliphatic hydrocarbons in the organic liquid product (OLP) and coke. The yields of C4 hydrocarbons, aromatic hydrocarbons and C2–C4 olefins increased with both temperature and catalyst acid site density but decreased with an increase in fluidizing gas velocity. In contrast, the yields of aliphatic and C5 hydrocarbons followed trends completely opposite to those of C2–C4 olefins and aromatic hydrocarbons. A comparison of performance of the catalysts in a fluidized-bed reactor with earlier work in a fixed-bed reactor showed that selectivities for formation of both C5 and iso-C4 hydrocarbons in a fluidized-bed reactor were extremely high (maximum of 68.7 and 18 wt% of the gas product) as compared to maximum selectivities of 18 and 16 wt% of the gas product, respectively, in the fixed-bed reactor. Also, selectivity for formation of gas products was higher for runs with the fluidized-bed reactor than for those with the fixed-bed reactor, whereas the selectivity for OLP was higher with the fixed-bed reactor. Furthermore, both temperature and catalyst determined whether the fractions of aromatic hydrocarbons in the OLP were higher in the fluidized-bed or fixed-bed reactor.  相似文献   

3.
Methane can be converted in high yields to aromatic products using an integrated recycle system containing both an oxidative coupling (OCM) reactor at 800°C, for conversion of CH4 to C2H4, and a secondary reactor containing Ga/ZSM-5 at 520°C for subsequent conversion of ethylene to aromatics. Using this system, aromatic product yields of >70% at CH4 conversions of ~100%, based on total CH4 added, can be obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A nozzle, fabricated from nickel, molybdenum, iron, palladium, and quartz was utilized to produce longer chain hydrocarbons, C m H n (m ≥ 3, nm) from C2 (ethane, acetylene) and C1 (methane) reactants at nozzle temperature range 1000–1150°C. The conversion of ethane was close to 100% at T noz = 1000°C, while that of methane reached 20% at T noz = 1150°C. The contact time in the nozzle is in the 10-3–10-2 s range. The reactions are first and higher order in reactant pressure. The reaction mechanism involves the formation of free radicals at the nozzle surface followed by gas‐phase reactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Conversion of methane to C2/C3 or higher hydrocarbons in a pulsed DC barrier discharge at atmospheric pressure was studied. Non-equilibrium plasma was generated in the barrier discharge reactor. In this plasma, electrons which had sufficient energy collided with the molecules of methane, which were then activated and coupled to C2/C3 or higher hydrocarbons. The effect of the change of applied voltage, pulse frequency and methane flow rate on methane conversion, selectivities and yields of products was studied. Methane conversion to higher hydrocarbons was about 25% as the maximum. Ethane, propane and ethylene were produced as primary products, including a small amount of unidentified C4 hydrocarbons. The selectivity and yield of ethane as a main product came to about 80% and 17% as the highest, respectively. The selectivities of ethane and ethylene were influenced not by the change of pulse frequency but by the change of applied voltage and methane flow rate. However, in case of propane, the selectivity was independent of those condition changes. The effect of the packing materials such as glass and A12O3 bead on methane conversion was also considered, showing that A12O3 played a role in enhancing the selectivity of ethane remarkably as a catalyst.  相似文献   

6.
Fischer-Tropsch synthesis for the production of C5+ hydrocarbons from syngas was carried out in a tubular fixed bed reactor (TFBR) and in a slurry bubble column reactor (SBCR). The Co-based catalysts for FTS were prepared by the conventional wet-impregnation of γ-Al2O3. Effects of operating conditions such as GHSV (1,000–4,000 ml/g·hr), reaction temperature (220–250°C) and pressure (0.5–3.0MPa) on the CO conversion and product selectivity of Co/γ-Al2O3 catalyst were examined in the TFBR and SBCR. The C5+ selectivity and olefin selectivity in an SBCR were found to be higher than that in a TFBR, whereas C2–C4 selectivity showed a reverse trend. The CO conversion and product distribution in an SBCR were less sensitive than that in a TFBR with variations of reaction conditions.  相似文献   

7.
Methane conversion to higher hydrocarbons in a “one‐step” process under non‐oxidative conditions at low temperature was here first introduced and investigated over Co–Pd/SiO2 catalysts at 250°C as a function of hydrogen concentration in helium and of catalyst composition. A maximum in the production of C2+ hydrocarbons including aromatics (benzene and toluene) was observed at 1.3 vol% H2/He mixture in which one pulse of methane was introduced. Additional hydrogenation with the same H2/He mixture at 400°C was efficient to remove the larger hydrocarbon fragments already existing on the surface. On pure Pd/SiO2 the one‐step process is not so efficient as on cobalt‐rich samples, but in the latter case the hydrocarbon removal is the most efficient during high‐temperature hydrogenation. It was found that methane conversion in the one‐step process is at least 2.5 times greater than that measured in the “two‐step” process and, in some cases, 80% of the methane introduced is converted to larger hydrocarbons. The results are discussed in terms of the hydrogen coverage ensuring the optimum hydrogen content in the surface CHx species leading to chain growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A process for the preparation of ethylene and propylene from methanol on a microporous silica—alumina—phosphate SAPO-34 catalyst is described. The influence of the temperature and the nature and concentration of the diluting agent on the catalyst activity, its selectivity with respect to C2=-C4= olefins, and ability to be regenerated were studied. The SAPO-34 catalyst was shown to be highly effective in the selectivity of ethylene and propylene formation; the total yield of C2=-C4= olefins at 350–450°C was 77–84% and methanol conversion was up to 96–99%. In the conversion of methanol under helium at 450°C, the yield of ethylene (∼36%) was higher than at 375°C (∼29%), while the yield of propylene (∼30%) was lower (∼38%). The use of water and helium vapors as a diluent increased the yield of ethylene to ∼36% at 375°C and to ∼50% at 450°C. In the conversion of methanol at 450°C in water vapors without helium, the yield of ethylene reached ∼44–49% and the yield of propylene was 24–29%. The C3= to C2= ratio in the process varied from ∼0.5 to 1.5. The high efficiency of the SAPO-34 catalyst is the consequence of the microporous structure of zeolite and the high content of acid centers of medium strength. In the course of methanol conversion, the catalyst was deactivated due to coking. After regeneration with air at 550°C, the catalyst activity was completely restored, while the crystal structure and the acid properties did not change. The activity of the catalyst in a cycle is prolonged if water vapors are used as a diluent and the catalyst is processed at a high temperature with vapors. The industrial processes for the production of ethylene and propylene from nonpetroleum materials are not used in Russia. The results of this study are comparable to the data obtained from the UOP/Norsk Hydro process on the SAPO-34 catalyst. The catalyst can be recommended for further trials on an FCC type pilot plant with a moving catalyst bed.  相似文献   

9.
Direct nonoxidative conversion of methane to hydrogen and hydrocarbons was achieved at atmospheric pressure and 120°C using nonthermal plasma sustained by plasma catalysis promoters (PCPs). Reactors had two different electrode configurations. Methane conversion correlated well with the specific energy density (SED). Methane conversion was independent of plasma power, flow rate, electrode configuration, or the type of PCPs. Hydrogen selectivity (ca. 60%) was dependent significantly on PCP and electrode configuration. The ethane/ethylene molar ratio increased from 0 to 0.15 with increasing SED. When the SED value was below ca. 100 kJ/L, ethylene was the only C2 hydrocarbon. These results are similar to the recently reported nonoxidative catalytic methane conversion at ca. 1000°C. Therefore, these results represent process intensification in methane conversion. PCPs underwent structural and chemical changes but their performances are not affected during an 80‐h experimental period. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4418–4429, 2017  相似文献   

10.
The oxidative coupling of methane to higher hydrocarbons (C2+) was studied in a bubbling fluidized bed reactor between 700°C and 820°C, and with partial pressures of methane from 40 to 70 kPa and of oxygen from 2 to 20 kPa; the total pressure was ca 100 kPa. CaO, Na2CO3/CaO and PbO/γ-Al2O3 were used as catalytic materials. C2+ selectivity depends markedly on temperature and oxygen partial pressure. The optimum temperature for maximizing C2+ selectivity varies between 720 and 800°C depending on the catalyst. Maximum C2+ selectivities were achieved at low oxygen and high methane partial pressures and amounted to 46% for CaO (T = 780°C; PCH4 = 70 kPa; PO2 = 5 kPa), 53% for Na2CO3/CaO (T = 760°C; PCH4 = 60 kPa; PO2 = 6 kPa) and 70% for PbO/γ-Al2O3 (T = 720°C; PCH4 = 60 kPa; PO2 = 5 kPa). Maximum yields were obtained at low methane-to-oxygen ratios; they amounted to 4.5% for CaO (T = 800°C; PCH4 = 70 kPa; PO2 = 12 kPa), 8.8% for Na2CO3/CaO (T = 820°C; PCH4 = 60 kPa; PO2 = 20 kPa) and 11.3% for PbO/γ-Al2O3 (T 2= 800°C; PCH4 = 60 kPa; PO2 = 20 kPa).  相似文献   

11.
Catalyst activity and product selectivity studies of the conversion of synthesis gas to various hydrocarbon fractions were performed in a single-tube tube-wall reactor (TWR) using a CoFe plasma-sprayed catalyst with the operating conditions: temperature 250–275°C, pressure 0.1–1.03 MPa, exposure velocity 139–722 μms−1, and a H2:CO ratio of 2.0. The catalyst activity in terms of CO conversion was highest (98.5% m/m) at an exposure velocity of 139 μms−1, temperature of 275°C, and in the pressure range 0.69–1.03 MPa. The selectivity to hydrocarbons was 43–50% (m/m) in the pressure range 0.69–1.03 MPa whereas the selectivity to C5 + hydrocarbons was over 40% of the total hydrocarbons produced. The production of propylene was higher than ethylene under similar process conditions. The performance of the TWR was predicted by a numerical model. The model is based on the complete two-dimensional transport equations and reaction rate equations, developed for the CoFe catalyst. Predictions are made for the temperature along the axis of the reactor, for CO and H2 conversions as functions of the reactor length and the exposure velocity, and the axial H2O and CO2 concentrations.  相似文献   

12.
The kinetics of deactivation by coke of a HZSM‐5 zeolite catalyst in the transformation of bioethanol into hydrocarbons has been studied. To attenuate deactivation, the following treatments have been carried out: (i) the zeolite has been subjected to a treatment with alkali to reduce the acid strength of the sites and (ii) it has subsequently been agglomerated into a macro and meso‐porous matrix of bentonite and alumina. The experimental study has been conducted in a fixed bed reactor under the following conditions: temperature, between 300 and 400°C; pressure, 1 atm; space‐time, up to 1.53 (g of catalyst) h (g of ethanol)?1; particle size of the catalyst, between 0.3 and 0.6 mm; feed flowrate, 0.16 cm3 min?1 of ethanol+water and 30 cm3 (NC) min?1 of N2; water content in the feed, up to 75 wt %; time on stream, up to 31 h. The expression for deactivation kinetics is dependent on the concentration of hydrocarbons and water in the reaction medium (which attenuates the deactivation) and, together with the kinetics at zero time on stream, allows the calculation of the evolution with time on stream of the yields and distribution of products (ethylene, propylene and butenes, C1‐C3 paraffins, and C4‐C12). By increasing the temperature in the 300–400°C range the role of ethylene on coke deposition is more significant than that of the other hydrocarbons (propylene, butenes and C4‐C12), which contribute to a greater extent to the formation of coke at 300°C. © 2011 American Institute of Chemical Engineers AIChE J, 58: 526–537, 2012.  相似文献   

13.
The oxidative coupling of methane to C2-hydrocarbons (OCM) over a La2O3/CaO catalyst (27 at.%) was investigated in an internally circulating fluidized-bed (ICFB) reactor (IDeff = 1.9 cm, Hriser = 20.5 cm). The experiments were performed in the following range of conditions: T = 800?900°C, pCH4:pO2pN2 = 57.1–64:16–22.9:20 kPa. The obtained C2 selectivities and C2 yields were compared with the corresponding data from a spouted-fluid-bed reactor (ID = 5 cm) and a bubbling fluidized-bed (FIB) reactor (ID = 5 cm). The maximum C2 yield in the internally circulating fluidized-bed (ICFB) reactor amounted to 12.2% (T = 860°C, 38.7% C2 selectivity, 31.5% methane conversion), whereas in the FIB reactor a maximum C2 yield of 13.8% (T = 840°C, 40.4% C2 selectivity, 34.2% methane conversion) was obtained. The lowest C2 yield was achieved in the spouted-bed (SFB) reactor (Y = 11.6%, T = 840°C, 36.2% C2 selectivity, 32.0% methane conversion). The highest space-time yield of 24.0 mol/kgcat.h was obtained in the ICFB reactor, whereas in a FIB reactor only a space-time yield of 9.6 mol/kgcatcould be obtained. The performance of the ICFB reactor was strongly influenced by gas-phase reactions. Furthermore, stable reactor operation was possible only over a narrow range of gas velocities.  相似文献   

14.
In the production of higher hydrocarbons, combining oxidative coupling of methane (OCM) with hydrogenation of the formed carbon oxides in a separate reactor provides an alternative to the currently applied methane conversion to syngas followed by Fischer‐Tropsch synthesis. The effects of CH4:O2 feed ratio in the OCM reactor and partial pressures of H2 or/and H2O in the hydrogenation reactor were analyzed to maximize production of C2+ hydrocarbons and reduce COx formation. The highest C2+ yield was achieved with low CH4:O2 feed ratio for OCM and removal of the formed water before entering the hydrogenation reactor.  相似文献   

15.
The oxidative coupling of methane (OCM) was carried out in a polytropic fixed-bed reactor applying a Zr/La/Sr catalyst developed by the Neste company. Over this catalyst the OCM reaction follows a complex reaction scheme which includes primary parallel reaction steps to CO, CO2 and C2H6 and consecutive reactions of ethane to ethylene or COx. Yield of higher hydrocarbons C2+ obtained with this catalyst strongly depended on reaction conditions, i.e. low partial pressures of methane and oxygen obtained by diluting the feed gas with nitrogen and high reaction temperatures promoted C2+ selectivity and yield. The maximum yield amounted to 21.4% (20 Vol.-% CH4, 9 Vol.-% O2, 71 Vol.-% N2, T = 860°C; XCH4 = 41.8%, S = 52.5%). This result belongs to the highest yields reported in the open literature.  相似文献   

16.
It was found that alcohols can be synthesized from CO and H2 at 3 MPa and 280–300°C in the presence of Fe catalysts containing an activated fibrous carbon material (AFCM) as a support. It was established that 20% Fe/AFCM catalysts possess an extremely high specific activity in the conversion of carbon monoxide (∼1 × 10−4 mol CO (mol Fe)−1 s−1), which is higher than the activity of traditional bulk iron catalysts by almost an order of magnitude. The values of CO conversion and selectivity for alcohols obtained for these catalysts are close to the parameters of industrial processes (Synol process, Oxyl process, and synthesis according to Bashkirov); however, they are obtained under milder conditions in a single run rather than with the use of a recycle. The Fe/AFCM catalysts make it possible to obtain monohydric alcohols in yields to ∼50 g/m3 (to a 50% concentration in synthesis water) upon the almost complete conversion of CO. In this case, the fraction of C2-C4 alcohols was as high as 55–60%.  相似文献   

17.
A test bench was developed and the conversion of the organic matter of coal (OMC) in supercritical water (SCW) was studied under conditions of a continuous supply of a water-coal suspension to a vertical flow reactor at 390–760°C and a pressure of 30 MPa. From 44 to 63% OMC was released as liquid and gaseous products from coal particles (from the water-coal supension) during the time of fall to the reactor. This stage was referred to as the dynamic conversion of coal. The particles passed through the stage of the dynamic conversion of coal did not agglomerate in the reactor in the subsequent process of batch conversion in a coal layer at T = 550–760°C. The volatile products of the overall process of the dynamic and batch conversion of coal included saturated hydrocarbons (CH4 and C2H6), aromatic hydrocarbons (C6H6, C7H8, and C8H10), synthesis gas (H2 and CO), and CO2. At T < 600°C, CO2 and CO were the degradation products of oxygen-containing OMC fragments, whereas they also resulted from the decomposition of water molecules at higher temperatures in accordance with the reaction (C) + H2O = CO + H2. The mechanisms were considered, and the parameters responsible for the dynamic conversion of coal were calculated.  相似文献   

18.
Reaction pathways of methane conversion in dielectric-barrier discharge   总被引:2,自引:0,他引:2  
Conversion of methane to C2, C3, C4 or higher hydrocarbons in a dielectric-barrier discharge was studied at atmospheric pressure. Non-equilibrium plasma was generated in the dielectric-barrier reactor. The effects of applied voltage on methane conversion, as well as selectivities and yields of products were studied. Methane conversion was increased with increasing the applied voltage. Ethane and propane were the main products in a dielectric-barrier discharge at atmospheric pressure. The reaction pathway of the methane conversion in the dielectric-barrier discharge was proposed. The proposed reaction pathways are important because they will give more insight into the application of methane coupling in a DBD at atmospheric pressure.  相似文献   

19.
Partial oxidation of methane by oxygen to form formaldehyde, carbon oxides, and C2 products (ethane and ethene) has been studied over silica catalyst supports (fumed Cabosil and Grace 636 silica gel) in the 630–780 °C temperature range under ambient pressure. The silica catalysts exhibit high space time yields (at low conversions) for methane partial oxidation to formaldehyde, and the C2 hydrocarbons were found to be parallel products with formaldehyde. Short residence times enhanced both the C2 hydrocarbons and formaldehyde selectivities over the carbon oxides even within the differential reactor regime at 780 °C. This suggests that the formaldehyde did not originate from methyl radicals, but rather from methoxy complexes formed upon the direct chemisorption of methane at the silica surface at high temperature. Very high formaldehyde space time yields (e.g., 812 g/kg cat h at the gas hourly space velocity = 560 000 (NTP)/kg cat h) could be obtained over the silica gel catalyst at 780 °C with a methane/air mixture of 1.5/1. These yields greatly surpass those reported for silicas earlier, as well as those over many other catalysts. Low CO2 yields were observed under these reaction conditions, and the selectivities to formaldehyde and C2 hydrocarbons were 28.0 and 38.8%, respectively, at a methane conversion of 0.7%. A reaction mechanism was proposed for the methane activation over the silica surface based on the present studies, which can explain the product distribution patterns (specifically the parallel formation of formaldehyde and C2 hydrocarbons).  相似文献   

20.
The thermal reaction of trichloroethylene (TCE: C2HCl3) has been conducted in an isothermal tubular flow reactor at 1 atm total pressure in order to investigate characteristics of chlorinated hydrocarbons decomposition and pyrolytic reaction pathways for formation of product under excess hydrogen reaction environment. The reactions were studied over the temperature range 650 to 900 °C with reaction times of 0.3–2.0 s. A constant feed molar ratio C2HCl3: H2 of 4: 96 was maintained through the whole experiments. Complete decay (99%) of the parent reagent, C2HCl3 was observed at temperature near 800 °C with 1 s reaction time. The maximum concentration (28%) of C2H2Cl2 as the primary intermediate product was found at temperature 700 °C where up to 68% decay of C2HCl3 occurred. The C2H3Cl as highest concentration (19%) of secondary products was detected at 750 °C. The one less chlorinated methane than parent increased with temperature rise subsequently. The number of qualitative and qualitative chlorinated products decreased with increasing temperature. HCl and dechlorinated hydrocarbons such as C2H4, C2H6, CH4 and C2H2 were the final products at above 800 °C. The almost 95% carbon material balance was given over a wide range of temperatures, and trace amounts of C6H6, C4H6 and C2HCl were observed above 800 °C. The decay of reactant, C2HCl3 and the hydrodechlorination of intermediate products, resulted from H atom cyclic chain reaction via abstraction and addition replacement reactions. The important pyrolytic reaction pathways to describe the important features of reagent decay, intermediate product distributions and carbon mass balances, based upon thermochemical and kinetic principles, were suggested. The main reaction pathways for formation of major products along with preliminary activation energies and rate constants were given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号