首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of adsorbent which is capable of selectively adsorbing lead(II) ions (Pb(2+)) was developed. The adsorbent was generated by reaction of sodium alginate with NB-9000B, a polyisocyanate type of prepolymer of polyurethane. The adsorbent was a hydrophilic and flexible alginate/polyurethane composite foam (ALG/PUCF) with the alginate chemically immobilized in the cell walls of the foam. Acid-base titration was used to quantify the concentration of carboxyl groups, which are present on the alginate molecules of the ALG/PUCF, functioning as the essential sites for binding Pb(2+). For the optimized ALG/PUCF, the carboxyl was found to be 38.2+/-1.2mumol/g of dry weight. The capacity for adsorbing Pb(2+) ions in 1.0g of dry weight of the optimized ALG/PUCF was found to be 16.0+/-2.1mumol, indicating that ion exchange was the essential mechanism for adsorbing Pb(2+) ions. The adsorption capacity was found to be highly sensitive to the pH of the sample solution; lower pH (<3) significantly decreased the adsorption. Competing ions such as Mg(2+), Ca(2+), and Cd(2+) also caused a decrease in selectivity and capacity for Pb(2+) adsorption, although the effect was less pronounced than the effect of pH. The ALG/PUCF is highly stable, flexible and easy to use. ALG/PUCF is also reusable after regeneration with ethylenediamine-N,N,N',N'-tetraacetic acid, disodium salt (EDTA-2Na). Due to these features, this adsorbent may be highly useful for elimination of Pb(2+) ions from contaminated water.  相似文献   

2.
In this study, 5-aminosalicylic acid was successfully grafted onto the poly(glycidyl methacrylate) (PGMA) macromolecular chains of PGMA/SiO2 to obtain a novel adsorbent designated as ASA-PGMA/SiO2. The adsorption properties of ASA-PGMA/SiO2 for heavy metal ions were studied through batch and column methods. The experimental results showed that ASA-PGMA/SiO2 possesses strong chelating adsorption ability for heavy metal ions, and its adsorption capacity for Cu2+, Cd2+, Zn2+, and Pb2+ reaches 0.42, 0.40, 0.35, and 0.31 mmol g−1, respectively. In addition, pH has a great influence on the adsorption capacity in the studied pH range. The adsorption isotherm data greatly obey the Langmuir and Freundlich model. The desorption of metal ions from ASA-PGMA/SiO2 is effective using 0.1 mol l−1 of hydrochloric acid solution as eluent. Consecutive adsorption-desorption experiments showed that ASA-PGMA/SiO2 could be reused almost without any loss in the adsorption capacity.  相似文献   

3.
Four kinds of silica-gel (SG)-supported diethylenetriamine (DETA) chelating resins SG-DETA-1, SG-DETA-2, SG-DETA-3, and SG-DETA-4 were prepared by functionalization of silica-gel via so-called "heterogeneous-direct-amination" (hetero-DA), "homogeneous-direct-amination" (homo-DA), "heterogeneous end-group protection" (hetero-EGP), and "homogeneous end-group protection" (homo-EGP) routes, respectively. These functionalized reactions on silica-gel were confirmed through elemental analysis, infrared spectroscopy, X-ray diffractometry, porous analysis, and thermogravimetry. Element analysis revealed that the direct-amination routes and homogeneous condition were more beneficial than the corresponding end-group protection routes and heterogeneous condition to the syntheses of chelating resins with high N content. Several metal ions, such as Ag(+), Cu(2+), Ni(2+), Hg(2+), Zn(2+) and Pb(2+), were chosen as representatives to investigate the relationship between adsorption capacities and N content of ligands onto the surface of silica-gel. The experiments results showed that all resins, SG-DETA-1, SG-DETA-2, SG-DETA-3 and SG-DETA-4, had a better adsorption for Hg(2+) and Cu(2+) than others. One conclusion should be drawn from the above compared experiments, that is, higher N content of silica-gel resins does not ensure a higher utilization ratio of N.  相似文献   

4.
Macroporous resins containing iminodiacetic acid (IDA) groups (Lewatit TP 207 and Chelex-100) were investigated as a function of concentration, temperature and pH for their sorption properties towards chromium(III). The chromium(III) ions sorbed onto the resin and in the equilibrium concentration were determined by inductively coupled plasma spectrophotometer. The maximum sorption for chromium ions was observed at pH 4.5. Solution pH had a strong effect on the equilibrium constant of Cr(III). The equilibrium constants were 320 and 7 at pH value 4.5 for Lewatit TP 207 and Chelex-100 resin, respectively. The Langmuir isotherm was used to describe observed sorption phenomena. Both the sorbents had high bonding constants with Lewatit TP 207 showing stronger binding. The equilibrium related to adsorption capacity and energy of adsorption was obtained by using plots of Langmuir adsorption isotherm. It was observed that the maximum adsorption capacity of 0.288 mmol of Cr(III)/g for Chelex-100 and 0.341 mmol of Cr(III)/g for Lewatit TP 207 was achieved at pH of 4.5. The rise in temperature caused a slight increase in the value of the equilibrium constant (Kc) for the sorption of chromium(III) ion.  相似文献   

5.
The ion exchange properties of sodium iron titanates, namely, NaFeTiO(4), Na(2)Fe(2)Ti(6)O(16) and iron-doped sodium nonatitanate were investigated. Conventional solid state and sol-gel methods were used in the synthesis of the sodium iron titanates. Structural characterization of the materials was performed with powder X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and with inductively coupled plasma optical emission spectrometry (ICP-OES). Based on TG analyses, the novel iron-doped sodium nonatitanate was proven to be a member of the layered titanate family. The different sodium iron titanates were compared based on the efficiency in separating Ni from aqueous streams by conducting batch experiments with a batch factor of 1000 ml/g. Iron-doped sodium nonatitanate exhibited the best ion exchange performance compared to the other sodium iron titanates studied. It was found to be selective for nickel over potassium and showed 99% removal efficiency for Ni.  相似文献   

6.
Surface engineered magnetic nanoparticles (Fe3O4) were synthesized by facile soft-chemical approaches. XRD and TEM analyses reveal the formation of single-phase Fe3O4 inverse spinel nanostructures. The functionalization of Fe3O4 nanoparticles with carboxyl (succinic acid), amine (ethylenediamine) and thiol (2,3-dimercaptosuccinic acid) were evident from FTIR spectra, elemental analysis and zeta-potential measurements. From TEM micrographs, it has been observed that nanoparticles of average sizes about 10 and 6 nm are formed in carboxyl and thiol functionalized Fe3O4, respectively. However, each amine functionalized Fe3O4 is of size ∼40 nm comprising numerous nanoparticles of average diameter 6 nm. These nanoparticles show superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. We have explored the efficiency of these nanoparticles for removal of toxic metal ions (Cr3+, Co2+, Ni2+, Cu2+, Cd2+, Pb2+ and As3+) and bacterial pathogens (Escherichia coli) from water. Depending upon the surface functionality (COOH, NH2 or SH), magnetic nanoadsorbents capture metal ions either by forming chelate complexes or ion exchange process or electrostatic interaction. It has been observed that the capture efficiency of bacteria is strongly dependent on the concentration of nanoadsorbents and their inoculation time. Furthermore, these nanoadsorbents can be used as highly efficient separable and reusable materials for removal of toxic metal ions.  相似文献   

7.
A novel zwitterionic graphene oxide-based adsorbent was first synthesized in a multistep procedure including the successive grafting of bis(2-pyridylmethyl)amino groups (BPED) and 1,3-propanesultone (PS) onto graphene oxide (GO) sheets. Then, the as-prepared materials were used as adsorbent for the removal of metal ions from aqueous solutions. The influence of solution pH, contact time, metal ion concentration, and temperature onto the adsorption capacity of the zwitterionic GO-BPED-PS adsorbent was investigated and compared with the GO-BPED adsorbent. In particular, it was shown that the maximum adsorption capacities of the GO-BPED-PS adsorbent were as high as 4.174 ± 0.098 mmol.g?1 for the Ni(II) ions and 3.902 ± 0.092 mmol.g?1 for the Co(II) ions under optimal experimental conditions (metal ion concentration = 250 mg.L?1, pH = 7 and T = 293 K). In addition, the adsorption behaviors of Ni(II) and Co(II) ions onto both the GO-BPED and GO-BPED-PS adsorbents fitted well with a pseudo-second-order kinetic model and a Jossens isotherm model. Moreover, adsorption thermodynamics of Ni(II) and Co(II) ions have been studied at various temperatures and confirmed the exothermic adsorption nature of the adsorption process onto the GO-BPED-PS adsorbent. Furthermore, the zwitterionic GO-BPED-PS adsorbent retained good adsorption properties after recycling 18 times which is much better than the conventional adsorbents.  相似文献   

8.
ABSTRACT

This paper describes the synthesis and characterisation of a magnetic crosslinked starch-graft-poly(acrylamide)-co-sodium xanthate (M-CSAX) nanocomposite based on magnetic starch (MCS), acrylamide (AM) and sodium xanthate that underwent heavy metal ions removal in response to an external magnetic field. The material was prepared using magnetic particle Fe3O4 nanoflakes (NFs) together with vinylated starch and poly(acrylamide)-co-sodium xanthate via an ultrasound-assisted radical crosslinking/polymerisation reaction. MCS was synthesised by a direct compounding method using Fe3O4 NFs as nuclear and vinylated starch as shell. The obtained M-CSAX has a saturation magnetisation value of 19.21 emu·g?1. Flocculation experiment results showed that the composites have functions of removing both turbidity and heavy metal ions from aqueous solution, and can adsorb 78.3% of Pb2+ and 63% of Cu2+ from the corresponding salt solutions. The findings of the present work highlight the potential for using M-CSAX as an effective and recyclable adsorbent for wastewater treatment.  相似文献   

9.
Background: Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV.

Methods: PSM was prepared by the W/O emulsion – freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity.

Results: The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell.

Conclusion: The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.  相似文献   


10.
Organic–inorganic hybrid silica nanospheres were prepared through a biomimetic silicification process in water at ambient conditions by the interaction of low cost poly(ethylene imine) hyperbranched polymer with silicic acid. The characterization of these nanoparticles by FTIR spectroscopy, scanning electron microscopy (SEM), zeta-potential and dynamic light scattering (DLS) experiments confirmed that the dendritic polymer was incorporated into the silica network. Preliminary experiments show that these hybrid nanoparticles can be employed for the removal of toxic water contaminants. Hybrid nanospheres’ sorption of two completely different categories of pollutants, i.e. metal ions such as Pb2+, Cd2+, Hg2+, Cr2O72−, and polycyclic aromatic hydrocarbons such as pyrene and phenanthrene, was largely enhanced in comparison with the corresponding polymer-free silica nanospheres. This was attributed to the to the formation of conventional metal-ligand and charge-transfer complexes proving that although integrated into the silica network poly(ethylene imine) retains its chemical properties.  相似文献   

11.
12.
In this study, the superparamagnetic adsorbent as Fe@Mg‐Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg‐Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.  相似文献   

13.
Recently, there is a growing concern for high performance energy storage devices in many applications where a lot of energy needs to be either stored or delivered. Here, we introduce a facile strategy to fabricate effectively combined 3D structured composites of crumpled graphene (CGR), polyaniline (PANI) and molybdenum disulfide (MoS2) for potential application to high performance alkali metal ion storage such as sodium and lithium ion storage. 2D graphene oxides, polyaniline, and physically exfoliated 2D MoS2 were combined to fabricate 3D structured CGR/PANI/MoS2 composites by aerosol self-assembly process and post heat treatment. Overall morphology of composites looked like crumpled paper ball with an average diameter of ~5 μm. MoS2 and PANI were attached on the surface of the graphene, which supported an accessible surface area and provided a path for electron transfer. Synergistic effect by the combination of the three functional materials resulted in outstanding electrochemical performance as sodium-ion storage in terms of storage capacity (328 F g?1 at 1 A g?1), good rate capability (282 F g?1 at 10 A g?1), and cycle performance (95%, after 1000 cycles). Even lithium-ion storage application, the CGR/PANI/MoS2 also delivered a high specific capacity of 470 mAh g?1 after 100 cycles.  相似文献   

14.
The adsorption of Pb(II) and Cd(II) metal ions on mustard husk has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using Langmuir and Freundlich isotherm models. The adsorption isotherm studies clearly indicated that the adsorptive behavior of Pb(II) and Cd(II) metal ions on mustard husk satisfies not only the Langmuir assumptions but also the Freundlich assumptions, i.e. multilayer formation on the surface of the adsorbent with an exponential distribution of site energy. Ion exchange and surface complexation are the major adsorption mechanisms involved.

The applicability of Lagergren kinetic model has also been investigated. Thermodynamic constant (kad), free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were calculated for predicting the nature of adsorption. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   


15.
《Composites Part B》2007,38(3):398-404
Composite films, consisting of poly-(vinyl alcohol) (PVA) and Zostera flakes, were prepared via film casting and their properties were investigated using a variety of techniques. The composites exhibit better mechanical and thermal properties than pure PVA, while the optimum algal content is about 20% w/w. Although the water sorption capacity of the films is similar, the measurements of mass transport properties on composites reveal improved gas barrier behavior. This can be attributed to the resistance in flow, caused by impermeable algal particles. Based on their potential biodegradability and their low cost, it can be concluded that the produced samples may offer a very promising bio-composite material for packaging applications.  相似文献   

16.
A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.  相似文献   

17.
In the present study, the ferric-impregnated granular ceramic (FGC) adsorbents were developed for the removal of phosphorus from aqueous solution. BET, SEM, and EDS were used to characterize the physical and chemical attributes (particle size, pore size and distribution, surface roughness, and chemical composition) of FGCs. Phosphorus adsorption characteristics were studied in a static batch system with respect to changes in contact time, initial phosphorus concentration, pH of solution, and temperature. The adsorption process was observed to follow a pseudo-first-order kinetic model, taking about 36 h to attain equilibrium. Phosphorus adsorption was found to be pH dependent and the maximum removal was obtained at pH 7.0–9.0. The experimental data denoted that the Langmuir isotherm model gave a more satisfactory fit for phosphorus removal than the Freundlich isotherm model. Results suggested that the novel adsorbent of FGCs had a good potential in remediation of phosphorus removal in aqueous solutions.  相似文献   

18.
Two novel π-conjugated polymers composed of alkyl carbazole/dialkoxyphenylene and squaraine units were synthesized by Sonogashira cross-coupling reactions. The structures and properties of these copolymers were characterized using FT-IR, NMR, UV–Vis, gel permeation chromatography and cyclic voltammetry (CV). Both polymers possess adequate thermal stability and exhibit good solubility in common organic solvents such as chloroform, THF, and toluene. The polymer films show intense and broad visible and near IR absorption with the long wavelength absorption maximum peaks of 796 and 851 nm for P 1 and P 2 , respectively, which are apparently red-shifted compared with poly(phenyleneethynylene). CV studies reveal that the band gaps of these copolymers are about 1.45 eV, implying that the resulted polymers may be promising candidates for solar cells.  相似文献   

19.
The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293–323 K.  相似文献   

20.
《Advanced Powder Technology》2021,32(9):3372-3387
Cubical-shaped zeolite A was synthesized from the Linz-Donawitz (LD) process slag of the Steel Industry, utilizing conventional fusion-assisted hydrothermal treatment. Morphological and Physico-chemical characterizations were performed by various characterization techniques. A weight ratio of 1:1.2 (LD-slag: NaOH) was maintained during fusion, which provides a better binding effect with better mechanical stability to the zeolite framework. Fe3+ adsorption studies were performed at 273, 298, 303, and 308 K, respectively, within the range of 10–40 mg L−1 Fe3+ ion concentration for kinetic and isotherm studies. A maximum adsorption capacity of 27.55 mg g−1 was obtained at a 1.4 g L−1 adsorbent dosage, with 99.99% Fe3+ ion removal. Moreover, the Fe3+ adsorption study obeyed the pseudo-second-order kinetic model, whereas multistage diffusion controlled the adsorption process. Langmuir isotherm model best fitted the equilibrium data suggesting the highly negative charge over the adsorbent surface played a vital role in the electrostatic attraction of Fe3+ ions. Isomorphic replacement of silicon by aluminum ion imparted a highly negative charge over the zeolite surface in the primary structure unit. For real-life sample drinking water, the Fe3+ ion removal efficiency increases to 97.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号