首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We report here that the E7 oncoprotein encoded by the oncogenic human papillomavirus (HPV) type 16 binds to the glycolytic enzyme type M2 pyruvate kinase (M2-PK). M2-PK occurs in a tetrameric form with a high affinity to its substrate phosphoenolpyruvate and a dimeric form with a low affinity to phosphoenolpyruvate, and the transition between both conformations regulates the glycolytic flux in tumor cells. The glycolytic intermediate fructose 1, 6-bisphosphate induces the reassociation of the dimeric to the tetrameric form of M2-PK. The expression of E7 in an experimental cell line shifts the equilibrium to the dimeric state despite a significant increase in the fructose 1,6-bisphosphate levels. Investigations of HPV-16 E7 mutants and the nononcogenic HPV-11 subtype suggest that the interaction of HPV-16 E7 with M2-PK may be linked to the transforming potential of the viral oncoprotein.  相似文献   

2.
We have expressed an unfused E7 protein from human papillomavirus 16 into Escherichia coli by using a T7-RNA polymerase system. E7 mRNA was detected one hour after promoter induction. Western blot analysis using either a murine monoclonal antibody elicited against E7 or sera from cervical carcinoma patients demonstrated that recombinant E7 expressed in E. coli reacted to both of them, and a 21 kD band is observed as a positive signal. This protein provides a suitable material for further protein structure and immunological studies and offers a screening tool for identification of circulating antibodies in human sera.  相似文献   

3.
In this study, we investigated the structural basis of human papillomavirus type 11 (HPV-11) E5a transforming activity at the amino acid level. The effects of insertion, deletion , and substitution mutations on teh E5a transforming activity were determined by the assay of anchorage-independent growth. In the conserved Cys-X-Cys structure, substitution of Ser for Cys-73 resulted in indistinguishable transforming activity, whereas substitution of Ser for Cys-75 or Ser for both Cys-73 and Cys-75 retained 50 and 42% transformation, respectively. This suggests that Cys at position 75 may be important for transformation. Charge and structural changes at teh COOH termini of several mutants impaired transformation significantly, but those at the middle region did so only mildly. In addition, the 16,000-molecular-weight pore-forming protein (16K protein) is known to associate with BPV-1, HPV-6, and HPV-16 E5 proteins. In this study, we investigated the correlation between E5a-16K binding affinity and the transforming activity of E5a by the use of 11 E5a mutants. Results show that E5a and these 11 E5a mutants could bind to the 16K protein when these proteins were coexpressed in COS cells, suggesting that simple binding of the 16K protein by E5a may not be sufficient for cell transformation.  相似文献   

4.
Occurrence of the antibodies against human papillomavirus (HPV) 16 proteins E4 and E7 is specifically but independently associated with cervical cancer. To correlate HPV DNA and antibody data, we examined the biopsy specimens and sera, by polymerase chain reaction (PCR) and by ELISA, respectively, from 51 patients with cervical cancer (including 3 recurrent cases) and 22 with cervical intra-epithelial neoplasia. Consensus primers for the L1 region were used for PCR and bacterially expressed, purified fusion protein HPV-16 E4 and non-fusion protein HPV-16 E7 were used for ELISA. HPV-16 DNA and other HPV types were detected in 17 and 25, respectively, out of 51 cases of cervical cancer. Ten out of the 17 HPV-16-DNA-positives were positive either for anti-E4 or for anti-E7: positivities for anti-E4, for anti-E7, and for both were 6/17, 5/17 and 1/17 respectively. Three anti-E7-positives consisted of those for HPV-33, -52 and -58 DNA, suggesting that limited cross-reaction occurred between the HPV types. Among the HPV-16-DNA-positive cases of cancer, lymph-node or distant metastasis was recorded more frequently in the seropositives than in the seronegatives. Our results show that the HPV-16 anti-E4 or anti-E7 occurs in some, but not in all, of the HPV-16-DNA-positive cases, and support the hypothesis that the presence of the HPV-16 antibodies can be used as a marker for possible metastasis.  相似文献   

5.
The conserved region 3 (CR3) of the E7 protein of human papillomaviruses contains two CXXC motifs involved in zinc binding and in the homodimerization of the molecule. Studies have suggested that the intact CXXC motifs in the CR3 of HPV16 and HPV18 E7 are required for the in vitro transforming activity of these proteins. CR3 also contains a low affinity pRb binding site and is involved in the disruption of the E2F/Rb1 complex. E7 is structurally and functionally related to Adenovirus E1A protein, which also has two CXXC motifs in CR3. However, the Ad E1A transforming activity appears to be independent of the presence of such domains. In fact, this viral protein exists in vivo as two different forms of 289 and 243 amino acids. The shorter Ad E1A form (Ad E1A243), where both CXXC motifs are deleted by internal splicing, retains its in vitro transforming activity. We have investigated if the HPV16 E7 CR3 can be functionally replaced by the Ad E1A243 CR3, which lacks both CXXC motifs. A chimeric protein (E7/E1A243) containing the CR1 and CR2 of HPV16 E7 fused to the CR3 of Ad E1A 243 was constructed. The E7/E1A243 while not able to homodimerize in the S. cerevisiae two-hybrid system retains several of the properties of the parental proteins, HPV16 E7 and Ad E1A. It associates with the 'pocket' proteins, induces growth in soft agar of NIH3T3 cells and immortalizes rat embryo fibroblasts. These data suggest that the CXXC motifs in CR3 of E7 do not play a direct role in the transforming properties of this viral protein but probably are important for maintaining the correct protein configuration.  相似文献   

6.
Protein concentration, leukocyte density, and lactate concentration were studied in 41 pairs of ventricular and lumbar CSF drawn at an interval of less than 24 hours from patients with suspected bacterial CNS infections. The ventriculo-lumbar ratios ranged from 0.003 to 10.2 (median=0.42) for protein and from 0.002 to 53.5 (median=0.17) for leukocytes. The uneven distribution of leukocytes and proteins in the CSF space may produce findings that fail to indicate bacterial CNS infections. Lactate was distributed more homogeneously in the CSF space than protein and leukocytes (ventriculo-lumbar ratio 0.52 to 1.66 [median=0.811).  相似文献   

7.
Certain human papillomaviruses (HPV) have been implicated in the etiology of cervical malignancies, and the E7 and E6 gene products of HPV type 16 are frequently expressed in these lesions. However, cytolytic T-lymphocyte (CTL)-mediated responses to HPV are rarely detectable in patients with cervical cancer. To examine whether the T-cell response is deficient during the HPV-induced transformation, we produced lines of transgenic (Tg) mice that expressed the E6 and E7 oncogenes in keratinized epithelia. The mice developed severe hypertrophy of all keratinized epithelia, but no malignancies were observed. Although epithelial cells from Tg mice could present at least an E7-encoded CTL epitope (E7 49-57), CTLs from these mice were neither primed to nor made tolerant of this epitope. No quantitative or qualitative differences were seen in the CTL responses of the Tg mice compared to those of their littermates following immunization with the peptide E7 49-57. Immunization of Tg mice with the E7 49-57 peptide protected them against a subcutaneous challenge with tumor cells expressing a transfected E7 gene, yet the skin was unaffected, although the cultured skin epithelial cells from Tg mice expressed E7. Our results suggest that the Tg mice were immunologically ignorant of HPV oncoproteins with respect to a CTL response and that a similar type of ignorance may explain why HPV-associated cervical cancer cells can escape immunological destruction.  相似文献   

8.
Cell cycle checkpoints and tumor suppressor gene functions appear to be required for the maintenance of a stable genome in proliferating cells. In this study chromosomal destabilization was monitored in relation to telomere structure, lifespan control and G2 checkpoint function. Replicative senescence was inactivated in secondary cultures of human skin fibroblasts by expressing the human papillomavirus type 16 (HPV-16) E6 oncoprotein to inactivate p53. Chromosome aberrations were enumerated during in vitro aging of isogenic control (F5neo) and HPV-16E6-expressing (F5E6) fibroblasts. We found that structural and numerical aberrations in chromosomes were significantly increased in F5E6 cells during aging in vitro and fluorescence in situ hybridization (FISH) analysis using chromosome-specific probes demonstrated the occurrence of rearrangements involving chromosome 4 and 6 in genetically unstable F5E6 cells. Flow cytometry and karyotypic analyses revealed increased polyploidy and aneuploidy in F5E6 cells only at passages > 16, although these cells displayed defective mitotic spindle checkpoint function associated with inactivation of p53 at passages 5 and 16. G2 checkpoint function was confirmed to be gradually but progressively inactivated during in vitro aging of E6-expressing cells. Aging of F5neo fibroblasts was documented during in vitro passaging by induction of a senescence-associated marker, pH 6.0 lysosomal beta-galactosidase. F5E6 cells displayed extension of in vitro lifespan and did not induce beta-galactosidase at high passage. Erosion of telomeres during in vitro aging of telomerase-negative F5neo cells was demonstrated by Southern hybridization and by quantitative FISH analysis on an individual cell level. Telomeric signals diminished continuously as F5neo cells aged in vitro being reduced by 80% near the time of replicative senescence. Telomeric signals detected by FISH also decreased continuously during aging of telomerase-negative F5E6 cells, but telomeres appeared to be stabilized at passage 34 when telomerase was expressed. Chromosomal instability in E6-expressing cells was correlated (P < 0.05) with both loss of telomeric signals and inactivation of G2 checkpoint function. The results suggest that chromosomal stability depends upon a complex interaction among the systems of telomere length maintenance and cell cycle checkpoints.  相似文献   

9.
Human papillomavirus (HPV) infection has been causally associated with cervical cancer. We tested the effectiveness of an HLA-A*0201-restricted, HPV-16 E7 lipopeptide vaccine in eliciting cellular immune responses in vivo in women with refractory cervical cancer. In a nonrandomized Phase I clinical trial, 12 women expressing the HLA-A2 allele with refractory cervical or vaginal cancer were vaccinated with four E786-93 lipopeptide inoculations at 3-week intervals. HLA-A2 subtyping was also performed, and HPV typing was assessed on tumor specimens. Induction of epitope-specific CD8+ T-lymphocyte (CTL) responses was analyzed using peripheral blood leukapheresis specimens obtained before and after vaccination. CTL specificity was measured by IFN-gamma release assay using HLA-A*0201 matched target cells. Clinical responses were assessed by physical examination and radiographic images. All HLA-A*0201 patients were able to mount a cellular immune response to a control peptide. E786-93-specific CTLs were elicited in 4 of 10 evaluable HLA-A*0201 subjects before vaccination, 5 of 7 evaluable HLA-A*0201 patients after two vaccinations, and 2 of 3 evaluable HLA-A*0201 cultures after all four inoculations. Two of three evaluable patients' CTLs converted from unreactive to reactive after administration of all four inoculations. There were no clinical responses or treatment toxicities. The ability to generate specific cellular immune responses is retained in patients with advanced cervical cancer. Vaccination with a lipidated HPV peptide epitope appears capable of safely augmenting CTL reactivity. Although enhancements of cellular immune responses are needed to achieve therapeutic utility in advanced cervical cancer, this approach might prove useful in treating preinvasive disease.  相似文献   

10.
Cytotoxic T lymphocyte (CTL) responses to the human papillomavirus (HPV) type 16 E6 and E7 proteins were measured in 20 women with known HPV and cervical disease status. CTL assays were performed after stimulation with E6 or E7 fusion proteins using autologous B lymphoblastoid cells infected with vaccinia viruses expressing E6 or E7. CTL responses to E6 and E7 were detected in 6 (75%) of 8 and 5 (56%) of 9 HPV-16-positive women without cervical intraepithelial neoplasia (CIN), respectively. Responses to E6 or E7 were each detected in only 2 (29%) of 7 HPV-16-positive women with CIN. Responses to both antigens were found in 63% of women without CIN and 14% of those with CIN. CTL responses to E6 or E7 are more commonly detectable in HPV-16-positive women without CIN than in HPV-16-positive women with CIN, suggesting that CTL response may play a role in disease protection.  相似文献   

11.
We have determined that three type-specific and conformationally dependent monoclonal antibodies, H16.E70, H16.U4, and H16.V5, neutralize pseudotype human papillomavirus type 16 (HPV16) virions in vitro. H16.U4 and H16.V5 neutralized pseudotype virions derived from the German HPV16 variant 114K and the Zairian variant Z-1194 with equal efficiency. In contrast, neutralization of Z-1194 pseudotype virions by H16.E70 was two orders of magnitude weaker than neutralization of 114K pseudotype virions. This difference correlated with enzyme-linked immunosorbent assay reactivity of H16.E70 to L1 virus-like particles of the two variants. A substitution at residue 282 of L1 was responsible for this differential reactivity, suggesting that this residue constitutes part of the H16.E70 epitope.  相似文献   

12.
The role tumor suppressors p53 and retinoblastoma (RB) play in the transformation process has become central to understanding the pathogenesis of DNA tumor viruses. The two oncoproteins of human papillomavirus (HPV)-16, E6 and E7, bind to p53 and RB, respectively, thus inactivating the function of these tumor suppressor genes. Immortalization of primary human foreskin epithelial cells by HPV requires expression of the E7 protein, and the E6 protein greatly enhances the immortalization frequency. Two of three cell lines immortalized by the HPV-16 E7 oncoprotein expressed wild-type p53 and only one of the three cell lines had acquired a p53 mutation and loss of heterozygosity at 17p during the immortalization process. All three E7-immortalized lines contained higher steady-state levels of p53 protein. Mutation of the p53 gene is not required for immortalization in the absence of the HPV-16 E6 inactivation of the p53 protein, and 16E7 expression leads to the stabilization of wild-type p53.  相似文献   

13.
We investigated the effects of the glucocorticoids hydrocortisone and dexamethasone on human papillomavirus type 16 (HPV16)-mediated human cell carcinogenesis using normal human keratinocytes (HKc) and HKc immortalized by transfection with HPV16 DNA (HKc/HPV16). Normal HKc did not require glucocorticoids for proliferation. In contrast, growth of early passage HKc/HPV16 strictly required these hormones, although glucocorticoid dependence became less stringent during in vitro progression. Glucocorticoid dependence was acquired by HKc early after immortalization with HPV16 DNA, and glucocorticoids were required for efficient HKc immortalization. However, treatment of HKc/HPV16 with hydrocortisone or dexamethasone did not increase the steady-state levels of HPV16 E6/E7 mRNA or protein. Firefly luciferase activity expressed under the control of the HPV16 upstream regulatory region and P97 promoter increased by about fourfold following dexamethasone treatment of HeLa, but only twofold in HKc/HPV16, and less than twofold in SiHa. However, all of these cell lines expressed sufficient endogenous glucocorticoid receptors to allow for a dexamethasone response of the mouse mammary tumor virus promoter. These results indicate that mechanisms other than a direct influence by glucocorticoids on HPV16 early gene expression may contribute to the striking biological effects of these steroids on HPV16-mediated human cell carcinogenesis.  相似文献   

14.
The human papillomavirus type 16 (HPV-16) E6 and E7 oncogenes are thought to play a role in the development of most human cervical cancers. These E6 and E7 oncoproteins affect cell growth control at least in part through their association with and inactivation of the cellular tumor suppressor gene products, p53 and Rb. To study the biological activities of the HPV-16 E6 and E7 genes in epithelial cells in vivo, transgenic mice were generated in which expression of E6 and E7 was targeted to the ocular lens. Expression of the transgenes correlated with bilateral microphthalmia and cataracts (100% penetrance) resulting from an efficient impairment of lens fiber cell differentiation and coincident induction of cell proliferation. Lens tumors formed in 40% of adult mice from the mouse lineage with the highest level of E6 and E7 expression. Additionally, when lens cells from neonatal transgenic animals were placed in tissue culture, immortalized cell populations grew out and acquired a tumorigenic phenotype with continuous passage. These observations indicate that genetic changes in addition to the transgenes are likely necessary for tumor formation. These transgenic mice and cell lines provide the basis for further studies into the mechanism of action of E6 and E7 in eliciting the observed pathology and into the genetic alterations required for HPV-16-associated tumor progression.  相似文献   

15.
An ELISA method for the quantitation in vitro of HCV serine proteinase activity was developed. A peptide substrate, Ac-Gly-Glu-Ala-Gly-Asp-Asp-Ile-Val-Pro-Cys-Ser-Met-Ser-Tyr-Thr-Trp-Thr-L ys (biotin) -OH (Sub-1), was hydrolyzed by a recombinant NS3 proteinase fused with maltose binding protein (MBP-NS3) into a product with a free amino moiety at the N-terminus. The product was immobilized, and the amino moiety was analyzed by digoxigenin labeling followed by immunological reaction with anti-digoxigenin-alkaline phosphatase conjugate and then the colorimeteric reaction. This method is suited for the high throughput screening of inhibitors, and the screening can be accelerated by automatic operation.  相似文献   

16.
CDKN2/p16 inhibits the cyclin D/cyclin-dependent kinase complexes that phosphorylate pRb, thus blocking cell cycle progression. We previously reported that p16 levels are low to undetectable in normal human uroepithelial cells (HUCs) and in immortalized uroepithelial cells with functional pRb, whereas p16 levels are markedly elevated in immortal HUCs with altered pRb (T. Yeager et al., Cancer Res., 55: 493-497, 1995). We now report that elevation of p16 levels occurs at senescence in HUCs, including HUCs transformed by human papillomavirus 16 E7 or E6, whose oncoprotein products lead to functional loss of pRb and p53, respectively. We also report that six of six independently immortalized E7 HUCs show high levels of p16 similar to those observed at HUC senescence, whereas p16 is undetectable in five of five immortal E6 HUCs. Four of the five independent E6 HUCs that lost p16 at immortalization showed hemizygous deletion of the 9p21 region. However, no homozygous CDKN2 deletions were detected, and only one CDKN2 mutation was identified. For the first time, these data associate elevated p16 with senescence in human epithelial cells. These data also suggest that a component of immortalization may be abrogation, either by pRb inactivation (as in the E7-transformed HUCs) or by p16 inactivation (as in the E6-transformed HUCs), of a p16-mediated senescence cell cycle block.  相似文献   

17.
A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity.  相似文献   

18.
BACKGROUND: Human papillomavirus (HPV) infection represents the most important risk factor for cervical carcinoma. Levels of expression of E6 and E7 transforming oncoproteins of high risk HPV genotypes (i.e., HPV-16 and HPV-18) have been linked specifically to the mitotic activity of cervical carcinoma and appear to be necessary for maintaining the malignant phenotype. However, E6/E7 viral proteins recently have been reported to be effective tumor rejection antigens in animal models and humans. Radiation treatment represents a standardized and effective modality for contemporary cervical carcinoma therapy. However, although the physiologic and cellular changes associated with high doses of irradiation have been well documented it has been shown only recently that an increased synthesis of specific cellular proteins is observed after irradiation. In this study, the authors analyzed the effects of high doses of gamma irradiation on the expression of E6/E7 oncoproteins in HPV-16-infected cervical carcinoma cell lines. In addition, the effects of radiation on major histocompatibility complex (MHC) restriction elements also were studied. METHODS: The effect of high doses of gamma irradiation (i.e., 1250, 2500, 5000, and 10,000 centigray [cGy]) on the kinetics of E6/E7 oncoprotein expression in two HPV-16 positive cervical carcinoma cell lines (i.e., CaSki and SiHa) was evaluated by Northern blot analysis. In addition, the effect of radiation on the expression of MHC molecules also was studied by Northern blot and fluorescence activator cell sorter (FACS) analysis. RESULTS: Dose ranging from 1250 (sublethal) to 10,000 (lethal) cGy significantly increased the expression of E6/E7 oncoproteins as well as MHC Class I molecules in CaSki and SiHa cell lines when compared with untreated tumor cells. Both cell lines showed increased mRNA expression for MHC Class I molecules in a dose-dependent manner. E6/E7 oncoproteins also were up-regulated in a dose-dependent manner in the CaSki cell line, whereas in the SiHa cell line their expression plateau at 5000 cGy. When the kinetics of radiation-induced up-regulation of E6/E7 were studied, persistent up-regulation of the viral oncoproteins was noted for all doses of irradiation, with the lower and sublethal doses (i.e., 1250-2500 cGy) inducing the most significant enhancement. CONCLUSIONS: High doses of irradiation can induce a significant and long-lasting up-regulation of E6/E7 oncogenes and MHC Class I restriction elements on HPV positive cervical carcinoma cell lines. These effects by themselves suggest that irradiation could enhance local tumor immunogenicity in patients receiving radiation therapy. However, in contrast to this possible beneficial effect, sublethal tumor irradiation (up-regulating E6/E7 transforming oncoproteins) also could confer a significant growth advantage to radiation-resistant tumor cells. These findings, combined with the previously reported acquisition of a radiation-induced drug resistance, could provide a biologic basis for the poor prognosis of patients with cervical carcinoma recurrence after radiation therapy.  相似文献   

19.
20.
Immunohistochemical expression of mutant p53 protein and human papillomavirus (HPV) 16 and 18 related E6 oncoprotein was studied in 36 biopsy proved anal cancers. Mutant p53 was detected in 61.1% cases. HPV 16 and 18 E6 protein was expressed in 22.2% cases, all of which were squamous cell carcinomas. Coexpression of both mutant p53 and E6 protein was found in only 5 cases (13.8%). In HPV 16/18 positive anal tumors, the degradation of p53 is accelerated by viral E6 oncoprotein. In HPV negative tumors, however, other mutagenic factors probably play a role in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号