首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel receptor-mediated nuclear protein import pathway   总被引:5,自引:0,他引:5  
Targeting of most nuclear proteins to the cell nucleus is initiated by interaction between the classical nuclear localization signals (NLSs) contained within them and the importin NLS receptor complex. We have recently delineated a novel 38 amino acid transport signal in the hnRNP A1 protein, termed M9, which confers bidirectional transport across the nuclear envelope. We show here that M9-mediated nuclear import occurs by a novel pathway that is independent of the well-characterized, importin-mediated classical NLS pathway. Additionally, we have identified a specific M9-interacting protein, termed transportin, which binds to wild-type M9 but not to transport-defective M9 mutants. Transportin is a 90 kDa protein, distantly related to importin beta, and we show that it mediates the nuclear import of M9-containing proteins. These findings demonstrate that there are at least two receptor-mediated nuclear protein import pathways. Furthermore, as hnRNP A1 likely participates in mRNA export, it raises the possibility that transportin is a mediator of this process as well.  相似文献   

2.
Human transportin1 (hTRN1) is the nuclear import receptor for a group of pre-mRNA/mRNA-binding proteins (heterogeneous nuclear ribonucleoproteins [hnRNP]) represented by hnRNP A1, which shuttle continuously between the nucleus and the cytoplasm. hTRN1 interacts with the M9 region of hnRNP A1, a 38-amino-acid domain rich in Gly, Ser, and Asn, and mediates the nuclear import of M9-bearing proteins in vitro. Saccharomyces cerevisiae transportin (yTRN; also known as YBR017c or Kap104p) has been identified and cloned. To understanding the nuclear import mediated by yTRN, we searched with a yeast two-hybrid system for proteins that interact with it. In an exhaustive screen of the S. cerevisiae genome, the most frequently selected open reading frame was the nuclear mRNA-binding protein, Nab2p. We delineated a ca.-50-amino-acid region in Nab2p, termed NAB35, which specifically binds yTRN and is similar to the M9 motif. NAB35 also interacts with hTRN1 and functions as a nuclear localization signal in mammalian cells. Interestingly, yTRN can also mediate the import of NAB35-bearing proteins into mammalian nuclei in vitro. We also report on additional substrates for TRN as well as sequences of Drosophila melanogaster, Xenopus laevis, and Schizosaccharomyces pombe TRNs. Together, these findings demonstrate that both the M9 signal and the nuclear import machinery utilized by the transportin pathway are conserved in evolution.  相似文献   

3.
4.
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. Presumably, the T-DNA transport intermediate is a single-stranded DNA molecule associated with two bacterial proteins, VirD2 and VirE2, which most likely mediate the transport process. While VirE2 cooperatively coats the transported single-stranded DNA, VirD2 is covalently attached to its 5' end. To better understand the mechanism of VirD2 action, a cellular receptor for VirD2 was identified and its encoding gene cloned from Arabidopsis. The identified protein, designated AtKAPalpha, specifically bound VirD2 in vivo and in vitro. VirD2-AtKAPalpha interaction was absolutely dependent on the carboxyl-terminal bipartite nuclear localization signal sequence of VirD2. The deduced amino acid sequence of AtKAPalpha was homologous to yeast and animal nuclear localization signal-binding proteins belonging to the karyopherin alpha family. Indeed, AtKAPalpha efficiently rescued a yeast mutant defective for nuclear import. Furthermore, AtKAPalpha specifically mediated transport of VirD2 into the nuclei of permeabilized yeast cells.  相似文献   

5.
Cytokines such as interferon-gamma (IFN-gamma), which utilize the well studied JAK/STAT pathway for nuclear signal transduction, are themselves translocated to the nucleus. The exact mechanism for the nuclear import of IFN-gamma or the functional role of the nuclear translocation of ligand in signal transduction is unknown. We show in this study that nuclear localization of IFN-gamma is driven by a simple polybasic nuclear localization sequence (NLS) in its COOH terminus, as verified by its ability to specify nuclear import of a heterologous protein allophycocyanin (APC) in standard import assays in digitonin-permeabilized cells. Similar to other nuclear import signals, we show that a peptide representing amino acids 95-132 of IFN-gamma (IFN-gamma(95-132)) containing the polybasic sequence 126RKRKRSR132 was capable of specifying nuclear uptake of the autofluorescent protein, APC, in an energy-dependent fashion that required both ATP and GTP. Nuclear import was abolished when the above polybasic sequence was deleted. Moreover, deletions immediately NH2-terminal of this sequence did not affect the nuclear import. Thus, the sequence 126RKRKRSR132 is necessary and sufficient for nuclear localization. Furthermore, nuclear import was strongly blocked by competition with the cognate peptide IFN-gamma(95-132) but not the peptide IFN-gamma(95-125), which is deleted in the polybasic sequence, further confirming that the NLS properties were contained in this sequence. A peptide containing the prototypical polybasic NLS sequence of the SV40 large T-antigen was also able to inhibit the nuclear import mediated by IFN-gamma(95-132). This observation suggests that the NLS in IFN-gamma may function through the components of the Ran/importin pathway utilized by the SV40 T-NLS. Finally, we show that intact IFN-gamma, when coupled to APC, was also able to mediate its nuclear import. Again, nuclear import was blocked by the peptide IFN-gamma(95-132) and the SV40 T-NLS peptide, suggesting that intact IFN-gamma was also transported into the nucleus through the Ran/importin pathway. Previous studies have suggested a direct intracellular role for IFN-gamma in the induction of its biological activities. Based on our data in this study, we suggest that a key intracellular site of interaction of IFN-gamma is the one with the nuclear transport mechanism that occurs via the NLS in the COOH terminus of IFN-gamma.  相似文献   

6.
7.
8.
The GTPase Ran is essential for nuclear import of proteins with a classical nuclear localization signal (NLS). Ran's nucleotide-bound state is determined by the chromatin-bound exchange factor RCC1 generating RanGTP in the nucleus and the cytoplasmic GTPase activating protein RanGAP1 depleting RanGTP from the cytoplasm. This predicts a steep RanGTP concentration gradient across the nuclear envelope. RanGTP binding to importin-beta has previously been shown to release importin-alpha from -beta during NLS import. We show that RanGTP also induces release of the M9 signal from the second identified import receptor, transportin. The role of RanGTP distribution is further studied using three methods to collapse the RanGTP gradient. Nuclear injection of either RanGAP1, the RanGTP binding protein RanBP1 or a Ran mutant that cannot stably bind GTP. These treatments block major export and import pathways across the nuclear envelope. Different export pathways exhibit distinct sensitivities to RanGTP depletion, but all are more readily inhibited than is import of either NLS or M9 proteins, indicating that the block of export is direct rather than a secondary consequence of import inhibition. Surprisingly, nuclear export of several substrates including importin-alpha and -beta, transportin, HIV Rev and tRNA appears to require nuclear RanGTP but may not require GTP hydrolysis by Ran, suggesting that the energy for their nuclear export is supplied by another source.  相似文献   

9.
The Rev protein of HIV-1 actively shuttles between nucleus and cytoplasm and mediates the export of unspliced retroviral RNAs. The localization of shuttling proteins such as Rev is controlled by the relative rates of nuclear import and export. To study nuclear export in isolation, we generated cell lines expressing a green fluorescent protein-labeled chimeric protein consisting of HIV-1 Rev and a hormone-inducible nuclear localization sequence. Steroid removal switches off import thus allowing direct visualization of the Rev export pathway in living cells. After digitonin permeabilization of these cells, we found that a functional nuclear export sequence (NES), ATP, and fractionated cytosol were sufficient for nuclear export in vitro. Nuclear pore-specific lectins and leptomycin B were potent export inhibitors. Nuclear export was not inhibited by antagonists of calcium metabolism that block nuclear import. These data further suggest that nuclear pores do not functionally close when luminal calcium stores are depleted. The distinct requirements for nuclear import and export argue that these competing processes may be regulated independently. This system should have wide applicability for the analysis of nuclear import and export.  相似文献   

10.
The tomato yellow leaf curl virus (TYLCV) found in Israel is a whitefly-transmitted monopartite geminivirus. Although geminiviruses have been found in the nuclei of phloem-associated cells, the mechanism of viral invasion is poorly understood. The possible role of the TYLCV capsid protein (CP), the only known component of the viral coat, in virus transport into the host cell nucleus was investigated by monitoring its specific nuclear accumulation in plant and insect cells. CP was fused to the beta-glucuronidase (GUS) reporter enzyme to assay nuclear import in petunia protoplasts, and micro-injection of purified fluorescently labeled CP was used to examine its nuclear uptake in Drosophila embryos. Both assays demonstrated that TYLCV CP is transported into plant- and insect-cell nuclei by an active process of nuclear import via a nuclear localization signal (NLS)-specific pathway. Using the GUS assay and deletion analysis, the TYLCV CP NLS sequence was identified in the amino-terminus of the protein.  相似文献   

11.
OBJECTIVE: To assess the presence of autoantibodies to the 1 protein (polypyrimidine-tract binding protein) of the heterogeneous nuclear RNPs (hnRNP) in different connective tissue diseases. Antibodies to other hnRNP proteins (A1, A2, and B) have been previously found in patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCTD). METHODS: Sera from 101 patients with various connective tissue diseases and 25 normal controls were investigated by enzyme-linked immunosorbent assay and immunoblotting, for their reactivity to highly purified recombinant hnRNP I. Moreover, reactivity to cellular hnRNP I protein was investigated by immunoblotting using a partially purified preparation of hnRNP proteins (including A1, A2, B, and I), and by indirect immunofluorescence. For the analysis of the fluorescence pattern, affinity-purified antibodies to hnRNP I; obtained from a selected patient, were tested on HEp-2 cells. RESULTS: By immunoblotting, antibodies reacting to recombinant hnRNP I were found in 22 of 40 patients with systemic sclerosis (SSc), 3 of 32 with RA, 0 of 23 with SLE, and 0 of 6 with MCTD. Antibodies to recombinant hnRNP I were more frequently found in patients with pre-SSc or limited SSc (15 of 24) than in those with intermediate or diffuse SSc (7 of 16). In indirect immunofluorescence studies, affinity-purified anti-hnRNP I autoantibodies gave a diffuse nucleoplasmic staining. Using an hnRNP preparation from nuclear extracts, anti-hnRNP I reactivity was detectable in SSc sera, while it was not detectable in RA, SLE, and MCTD sera reacting with hnRNP A/B proteins. CONCLUSIONS: Human autoimmune sera show distinct patterns of anti-hnRNP reactivity, i.e., anti-A/B in SLE and RA sera, and anti-I in SSc sera. This suggests that A/B proteins and the I protein may be involved in different dynamic hnRNP complexes that elicit different autoimmune responses. From a clinical perspective, anti-hnRNP I antibodies are frequently associated with pre-SSc features, suggesting an early appearance of these antibodies during the course of the disease.  相似文献   

12.
13.
The IkappaB alpha protein is able both to inhibit nuclear import of Rel/NF-kappaB proteins and to mediate the export of Rel/NF-kappaB proteins from the nucleus. We now demonstrate that the c-Rel-IkappaB alpha complex is stably retained in the cytoplasm in the presence of leptomycin B, a specific inhibitor of Crm1-mediated nuclear export. In contrast, leptomycin B treatment results in the rapid and complete relocalization of the v-Rel-IkappaB alpha complex from the cytoplasm to the nucleus. IkappaB alpha also mediates the rapid nuclear shuttling of v-Rel in an interspecies heterokaryon assay. Thus, continuous nuclear export is required for cytoplasmic retention of the v-Rel-IkappaB alpha complex. Furthermore, although IkappaB alpha is able to mask the c-Rel-derived nuclear localization sequence (NLS), IkappaB alpha is unable to mask the v-Rel-derived NLS in the context of the v-Rel-IkappaB alpha complex. Taken together, our results demonstrate that IkappaB alpha is unable to inhibit nuclear import of v-Rel. We have identified two amino acid differences between c-Rel and v-Rel (Y286S and L302P) which link the failure of IkappaB alpha to inhibit nuclear import and DNA binding of a mutant c-Rel protein to oncogenesis. Our results support a model in which loss of IkappaB alpha-mediated control over c-Rel leads to oncogenic activation of c-Rel.  相似文献   

14.
15.
16.
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

17.
18.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport.  相似文献   

19.
BACKGROUND: The proteins of the Mcm2-7 family are required for the initiation of DNA replication. In Saccharomyces cerevisiae the nuclear envelope does not break down during the mitotic phase of the cell cycle. Large nuclear proteins, such as the Mcm proteins, which accumulate in the nucleus during specific portions of the cell cycle, must have regulated mechanisms to direct their entry into the nucleus. RESULTS: We have identified a nuclear localization sequence (NLS) in Mcm3, and demonstrated that it is necessary for the translocation of Mcm3 into the nucleus and sufficient for directing Escherichia coli beta-galactosidase to the nucleus. Immediately adjacent to the nuclear localization sequence are four potential sites for phosphorylation by Cdc28. Mutagenesis of all four sites has no immediate phenotypic effect on cell growth or viability, nor does it affect nuclear accumulation of Mcm3, although two-dimensional protein gel analysis has shown that at least some of these sites are normally phosphorylated in vivo. Substitution of the Mcm3 NLS by the SV40 large T-antigen NLS also directs the nuclear accumulation of the Mcm3-T-antigen protein, although cell growth is compromised. Replication activity in cells bearing either the Mcm3-Cdc28 phosphorylation site mutations or the Mcm3 T-antigen NLS substitution, as measured by plasmid stability assays, is comparable to activity in wild-type cells. CONCLUSIONS: The Mcm3 protein is imported into the nucleus by a specific NLS. The cell cycle specific nuclear accumulation of Mcm3 appears to be a result of nuclear retention or nuclear targeting, rather than nuclear import regulated through the NLS.  相似文献   

20.
Nuclear import of proteins containing a nuclear localization signal (NLS) is dependent on the presence of a cytoplasmic NLS receptor, the GTPase Ran, and p10/ NTF2. The NLS receptor is a heterodimeric proteins consisting of subunits of approximately 60 and 97 kDa, which have been termed importin alpha/beta, karyopherin alpha/beta, or PTAC 58/ 97. Members of the 60-kDa/importin alpha subunit family directly bind to the NLS motif and have been shown to function as adaptors that tether NLS-containing proteins to the p97/ importin beta subunit and to the downstream transport machinery. Herein we report the identification and characterization of hSRP1 gamma, a human importin alpha homologue. The hSRP1 gamma protein is around 45% identical to the previously identified human importin alpha homologues hSRP1 alpha/Rch1 and NPI/ hSRP1. hSRP1 gamma can form a complex with importin beta and is able to mediate import of a BSA-NLS substrate in an in vitro nuclear import system. Interestingly, hSRP1 gamma shows a very selective expression pattern and is most abundantly expressed in skeletal muscle, representing more than 1% of the total protein in this tissue. A potential role for hSRP1 gamma in tissue-specific transport events is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号