首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymers usually utilized for gastroresistant film coating of tablets or pellets such as cellulose acetate phthalate (CAP), cellulose acetate trimellitate (CAT), hydroxypropylmethylcellulose phthalate (HPMCP), and Eudragit L and S were used in the preparation of drug/polymer matrix tablets. These tablets were prepared either by direct compression of both powders or by the formulation of microspheres that were then compressed. The microspheres were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffractometry analyses. Dissolution studies were finally carried out to verify if the tablets possessed gastroresistant or controlled-release characteristics. Except for Eudragit L, the polymers can be used under certain conditions in the formulation of modified-release tablets.  相似文献   

2.
Polymers usually utilized for gastroresistant film coating of tablets or pellets such as cellulose acetate phthalate (CAP), cellulose acetate trimellitate (CAT), hydroxypropylmethylcellulose phthalate (HPMCP), and Eudragit L and S were used in the preparation of drug/polymer matrix tablets. These tablets were prepared either by direct compression of both powders or by the formulation of microspheres that were then compressed. The microspheres were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffractometry analyses. Dissolution studies were finally carried out to verify if the tablets possessed gastroresistant or controlled-release characteristics. Except for Eudragit L, the polymers can be used under certain conditions in the formulation of modified-release tablets.  相似文献   

3.
Abstract

To obtain a prolonged-action dosage form of ketoprofen, 3 different techniques for delaying drug release from hydrophylic matrices of hydroxypropylmethylcellulose were evaluated. They were: the incorporation of glyceryl monostearate, as a release retardant; the partial coating with an impermeable covering of cellulose acetate phthalate; the pan-spray coating with a mixture of insoluble (Eudragit) and soluble (PEG 400) polymers. The in vitro release profiles of each formulation were studied using the USP basket method. Pan-spray coating with the Eudragit-PEG mixture was found to be the best technique, enabling the desired release profile to be obtained through variation of the coating thickness  相似文献   

4.
Abstract

Tensile strengths of compacts consisting of acrylic resin polymers in combination with a plastic drug (theophylline) and a brittle drug (sodium sulfathiazole) were investigated. The polymers studied included Eudragit RS PM, RL PM, S 100, L 100, and L 100-55. All compacts were compressed to a solid fraction of 0.81. The solid fraction, rather than compression force, was kept constant in order to account for the differences in packing characteristics and elastic and plastic deformational properties of different materials (1). Tensile strength profiles for the blends of the Eudragit S 100 and RL PM polymers with sodium sulfathiazole included approximately linear relationships between pure drug and pure polymer. The Eudragit L 100-55 exhibited a large peak in the tensile strength of compacts containing 20% sodium sulfathiazole. Significant differences between the physical-mechanical properties of the methacrylate ester and methacrylic acid copolymers were observed where the latter proved to be much stronger at all concentrations. The differences between the two categories of polymers were greater in compacts containing the plastic drug, theophylline. Peaks in tensile strengths were seen for both drugs with all three of the methacrylic acid copolymers, while the methacrylate ester copolymers maintained approximately linear relationships for all ratios of drug and polymer.  相似文献   

5.
Tensile strengths of compacts consisting of acrylic resin polymers in combination with a plastic drug (theophylline) and a brittle drug (sodium sulfathiazole) were investigated. The polymers studied included Eudragit RS PM, RL PM, S 100, L 100, and L 100-55. All compacts were compressed to a solid fraction of 0.81. The solid fraction, rather than compression force, was kept constant in order to account for the differences in packing characteristics and elastic and plastic deformational properties of different materials (1). Tensile strength profiles for the blends of the Eudragit S 100 and RL PM polymers with sodium sulfathiazole included approximately linear relationships between pure drug and pure polymer. The Eudragit L 100-55 exhibited a large peak in the tensile strength of compacts containing 20% sodium sulfathiazole. Significant differences between the physical-mechanical properties of the methacrylate ester and methacrylic acid copolymers were observed where the latter proved to be much stronger at all concentrations. The differences between the two categories of polymers were greater in compacts containing the plastic drug, theophylline. Peaks in tensile strengths were seen for both drugs with all three of the methacrylic acid copolymers, while the methacrylate ester copolymers maintained approximately linear relationships for all ratios of drug and polymer.  相似文献   

6.
The major goal of this research was to successfully formulate solid dispersion (SD) of the poorly soluble anticancer drug flutamide (FLT) using various hydrophilic polymers. Furthermore, to get more insight into SD, solid-state studies (miscibility and molecular interaction) were correlated with solution study (precipitation inhibition, dissolution). Hydrophilic polymers like PVP K90, HPMC, Eudragit EPO, and PEG 8000 were used at different drug-to-polymer w/w ratios. Solid-state miscibility studies were carried out using modulated differential scanning calorimetry (MDSC). SDs were prepared using solvent-evaporation technique and characterized by powder X-ray diffraction (PXRD) and MDSC. Infrared, Raman spectroscopy and molecular modeling were used to investigate drug-polymer interactions in the dispersions. Precipitation inhibition studies were carried out at various FLT-hydrophilic polymer ratios. Precipitation inhibition studies showed that PEG 8000 has the highest efficiency, followed by PVP K90, while HPMC and EPO showed no effect on precipitation inhibition. In the solid-state, MDSC of the physical mixture (PM) suggested that FLT is miscible to a greater extent with EPO and PEG 8000. Characterization of the amorphous dispersions using MDSC and PXRD concluded that FLT transformed from crystalline to amorphous form in the presence of PVP K90 and PEG 8000. Spectroscopic results confirmed stronger interaction of FLT with PVP K90 and PEG 8000, thereby confirming the in-solution precipitation and molecular modeling binding energy results. Amorphous dispersions formulated with PVP and PEG were stable and showed higher dissolution, an important property necessary to improve the physicochemical properties and drug delivery of poorly soluble anticancer drug FLT.  相似文献   

7.
Theophylline tablet formulations containing a combination of cationic and anionic acrylic resins were prepared and evaluated. Equal amounts of Eudragit RSPM (cationic resin) and Eudragit L100 (anionic resin) were included at the 15% level (total polymer content) into the tablet formulations. Pressure-hardness profiles with theophylline-resin compacts (4:1) demonstrated that compacts containing the RSPM resin were the most compressible. The dissolution profiles for theophylline in acidic media showed slower release rates from tablets containing the combined resins than from those containing each of the single resins. It was proposed that this decrease in drug release rate was a result of a solid state interaction between the oppositely charged polymers. As the amount of retardant in the matrix increased, the release rates in acidic media decreased. In pH 7.4 phosphate buffer, much faster release was seen due to the higher solubility of the Eudragit L-100 resin at this pH level. Tablet hardness between the range of 6.8 kg to 15 kg showed minimal influences on the dissolution rate. Recompression and relubrication of the tablet formulation containing both polymers, produced a decrease in release rates of theophylline from the tablet matrix.  相似文献   

8.
Abstract

Theophylline tablet formulations containing a combination of cationic and anionic acrylic resins were prepared and evaluated. Equal amounts of Eudragit RSPM (cationic resin) and Eudragit L100 (anionic resin) were included at the 15% level (total polymer content) into the tablet formulations. Pressure-hardness profiles with theophylline-resin compacts (4:1) demonstrated that compacts containing the RSPM resin were the most compressible. The dissolution profiles for theophylline in acidic media showed slower release rates from tablets containing the combined resins than from those containing each of the single resins. It was proposed that this decrease in drug release rate was a result of a solid state interaction between the oppositely charged polymers. As the amount of retardant in the matrix increased, the release rates in acidic media decreased. In pH 7.4 phosphate buffer, much faster release was seen due to the higher solubility of the Eudragit L-100 resin at this pH level. Tablet hardness between the range of 6.8 kg to 15 kg showed minimal influences on the dissolution rate. Recompression and relubrication of the tablet formulation containing both polymers, produced a decrease in release rates of theophylline from the tablet matrix.  相似文献   

9.
Some acidic nonsteroidal anti-inflammatory drugs (NSAIDs) are poorly soluble in the stomach. In this study, M-5011, d-2-[4-(3-methyl-2-thienyl) phenyl] propionic acid, was used as a model substance. To increase the dissolution rate of M-5011, a solid dispersion of M-5011 was prepared by the powder mixing method using Eudragit E-100 (aminoacryl methacrylate copolymer) as a carrier. Evaluation by X-ray diffraction and differential scanning calorimetry (DSC) revealed that M-5011 easily formed a solid dispersion with E-100. The dissolution behavior of a physical mixture prepared immediately after mixing and the mixture stored for 14 days at 40°C were examined. It was observed that the former, containing a great deal of E-100, showed a fairly good dissolution behavior, and the latter had a better dissolution rate. The mechanism of the interaction of M-5011 and E-100 was investigated by infrared (IR) spectroscopy and nuclear magnetic resonance (NMR). The interaction was simulated by NMR using a monomer of Eudragit E-100.  相似文献   

10.
Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.  相似文献   

11.
The objectives of present work was to design and characterize the rabeprazole sodium loaded microcapsules prepared by solvent evaporation technique using ethyl cellulose (EC) based various mucoadhesive polymer, followed by a triple coating with Eudragit L100. The Box-behnken design (BBD) was applied for optimization of formulations containing EC, HPMCK100M and Eudragit L100 as factors for selected responses like entrapment efficiency, mucoadhesive property and drug release in 24 h. The prepared microcapsules were characterized for particle size, drug content, swelling index, mucoadhesive strength, and in vivo antiulcer activity. FT-IR studies revealed that there was no drug-polymer interaction. SEM studies revealed that microcapsules were non-aggregated, spherical shape and smooth appearance. In vitro drug release data from microcapsules was fitted to different kinetic models to explain release profiles. The correlation coefficient value (r2) indicated that the drug release followed Higuchi model. Analysis of variance (ANOVA) showed significant difference in the release of drug from all formulations at p < 0.05 level. Accelerated stability study of optimized formulation (F4) upto 6 months showed there was no change in drug content and release characteristics during storage. In vivo antiulcer activity showed that the optimized microcapsules were able to protect rat stomach against ulcer formation vis-à-vis aqueous solution of the drug showed only negligible and minimum effect.  相似文献   

12.
ABSTRACT

Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.  相似文献   

13.
ABSTRACT

The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   

14.
The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   

15.
Neutral pellets were loaded with bisacodyl and enteric-coated with hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl ethylcellulose (CMEC), cellulose acetate trimellitate (CAT), and poly(ethylacrylate, methacrylic acid) (Eudragit L 30 D) in a miniature fluid-bed pan coater called MiniWiD. Gastric juice resistance was tested by dissolution using USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours. As a measure of enteric coating quality the USP specifications were used meaning that no more than 10 % of the drug should be released within 2 hours.

Organic-solvent based films of HPMCAS, CMEC and CAT at a coating level of 18 to 25 % provided gastroresistance for more than 6 hours. Aqueous suspensions of HPMCAS and CMEC as well as the ammonium salt aqueous solutions of CAT produced films with a short gastroresistance of below 0.6 hours. By doubling the coating level of water-based HPMCSD films the protection was prolonged to 3.4 h.

Enteric coatings were obtained from all aqueous latex dispersions of Eudragit L 30 D at a coating level of 24 %. The alteration of coating temperature between 25 and 45 °C had no significant effect on the release rates, whereas the variation of type and amount of plasticizer led to a different release rate after 2 hours. Best protection was obtained using films plasticized with 20 % of dibutyl phthalate (DBP) allowing a release of only 4 % of the drug in 6 hours although the application temperature was 15 °C below the minimum film-forming temperature (MFT). All coatings dissolved in artificial intestinal fluid within 15 minutes.  相似文献   

16.
The application of a polymer film coat is a common practice in the preparation of controlled release dosage forms. In vitro characterization of the polymeric membrane is essential for optimization of the membrane formulation. Polymers selected in this study were cellulose acetate (CA), ethylcellulose (EC) and copolymers of acrylic and methacrylic esters (Eudragit RL100). Plasticizers used in this study were dibutyl sebacate (DBS), triethyl citrate (TEC) and triacetin. Polymer dispersions containing different plasticizers were cast into membranes on a tefloncoated plate. The resulting membranes were evaluated for permeability and mechanical properties. Membrane permeability was determined by quantifying the transport of a model drug, theophylline, across a circular polymeric membrane mounted in a thermostatted, twocompartment horizontal diffusion cell. Mechanical properties of the membranes, such as tensile strength, percent elongation and modulus of elasticity, were determined using an Instron 4301. The results of this study indicate that the CA and EC membranes were found to be effective in preventing the diffusion of theophylline. The addition of Eudragit RL100 to the CA or EC membranes increased the permeability but decreased the mechanical strength of the resulting membrane(s). A significant increase in permeability was observed at a CA:Eudragit RL100 ratio of 60:40. This could be explained by a change in the mechanism of drug transport, principally from partitioning into the membrane to diffusing through the liquidfilled pores of the resulting membrane(s). The results of the mechanical deformation studies indicate that triacetin has a greater potential for partitioning into the CA polymer than does TEC or DBS. DBS has a greater potential for partitioning into the EC polymer than does TEC or triacetin. The addition of Eudragit RL100 to the CA membrane(s) caused a significant decrease in the tensile strength, percent elongation and modulus of elasticity, thus resulting in weaker and softer membranes. The results indicate that the test methods employed were sufficiently sensitive to quantify the test parameters for the changes in membrane compositions which could provide valuable information for optimization of the membrane formulation.  相似文献   

17.
Using a mixture of Eudragit EPO and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) (Kollidon VA64) as carriers, a nimodipine solid dispersion (NM-SD) was prepared by hot-melt extrusion (HME) to achieve high dissolution. The dissolution profiles in 900 mL 0.1 mol/L HCl showed that the drug release of NM-SD reached 90% in 1h. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) were used to characterize the state of NM. The results obtained showed that NM was in an amorphous form in the solid dispersion (SD). NM-SD tablets (NM-T-SD) were compressed by wet granulation and direct compression, respectively. The stability of NM-T-SD was examined during a 2-month storage period (40 degrees C, RH 75%). The results showed that the dissolution of NM-T-SD was slightly reduced after 2 months storage (40 degrees C, RH 75%), which implied that aging occurred to some degree. However, no NM crystals could be observed by PXRD after 2 months storage for NM-T-SD (F11) prepared by direct compression.  相似文献   

18.
Sustained release and enteric theophylline tablets were prepared by directly compressing spray-dried microsphers with Eudragits L30D, L100-55 and E30D. The spray-drying process was free from using organic solvent. Drug dissolution of the enteric tablet in an acidic solution (pH 1.2) was highly dependent on the polymer content of the microsphere. Completely enteric function was observed with drug-to-polymer ratio of 1:3 using Eudragit L30D or L100-55. Tablet with Eudragit E30D formulated at the 2-40% level showed good sustained drug release which was throughly independent of the pH of dissolution media. The dissolution pattern was similar to that of Theo-dur and gave a straight line in Higuchi plot. In each tablet, the controlled drug release was attributed to continuous and well-dispersed polymer matrix formed by spray-drying and subsequent compressing process  相似文献   

19.
Microencapsulation of theophylline drug particles was carried out by a spray drying technique using an aqueous system. Comparison was made between the use of a solution and a suspension feed. The spray dried products obtained from a suspension feed were encapsulated and have better flowability. Various polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), hydroxypropylmethylcellulose (HPMC), methylcellulose (MC) and sodium carboxymethylcellulose (NaCMC) were studied to evaluate their spray-coating properties. The results showed that drug release from the coated products was dependent on the hydrophilicity of the polymer. NaCMC, which is more hydrophilic, gelled faster and retarded the drug release more effectively. HPMC and MC produced products with similar dissolution profiles and flow properties. Spray coating with HPMCAS was unsuccessful. The polymers also affect the size and cohesiveness of the products. Smaller size particles which are more cohesive cause agglomeration and delay release of the drug.  相似文献   

20.
Abstract

Neutral pellets were loaded with bisacodyl and enteric-coated with hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl ethylcellulose (CMEC), cellulose acetate trimellitate (CAT), and poly(ethylacrylate, methacrylic acid) (Eudragit L 30 D) in a miniature fluid-bed pan coater called MiniWiD. Gastric juice resistance was tested by dissolution using USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours. As a measure of enteric coating quality the USP specifications were used meaning that no more than 10 % of the drug should be released within 2 hours.

Organic-solvent based films of HPMCAS, CMEC and CAT at a coating level of 18 to 25 % provided gastroresistance for more than 6 hours. Aqueous suspensions of HPMCAS and CMEC as well as the ammonium salt aqueous solutions of CAT produced films with a short gastroresistance of below 0.6 hours. By doubling the coating level of water-based HPMCSD films the protection was prolonged to 3.4 h.

Enteric coatings were obtained from all aqueous latex dispersions of Eudragit L 30 D at a coating level of 24 %. The alteration of coating temperature between 25 and 45 °C had no significant effect on the release rates, whereas the variation of type and amount of plasticizer led to a different release rate after 2 hours. Best protection was obtained using films plasticized with 20 % of dibutyl phthalate (DBP) allowing a release of only 4 % of the drug in 6 hours although the application temperature was 15 °C below the minimum film-forming temperature (MFT). All coatings dissolved in artificial intestinal fluid within 15 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号